
Graphics Hardware (2005), pp. 1–8
M. Meissner, B.- O. Schneider (Editors)

Renaissance : A Functional Shading Language

Chad Austin and Dirk Reiners

Human-Computer Interaction Program
Iowa State University

{aegisk,dreiners}@cs.iastate.edu

Abstract

Programmable graphics hardware is growing in capability and flexibility at a rapid pace. Existing languages
for programming this hardware make it difficult at best to build collections of custom graphics algorithms that
can be combined as needed. We present a pure functional shading language, Renaissance, that uses the concepts
of computational frequency and frequency inference to naturally allow composition of shader concepts without
generating redundant code. We also provide most of the benefits of metaprogramming languages without the
restriction of requiring a full host environment.
I.3.7 [Computer Graphics]: Shading

1. Introduction

The most important innovation in computer graphics hard-
ware over the last decade has been the introduction of pro-
grammability. Textures were a first step towards fine-grain
control over the rendered pixels, and together with multi-
pass rendering and later multi-textured pipeline configura-
bility they allowed some basic implementations of user-
specific calculations in the graphics hardware. But mapping
general algorithms to the very limited and non-intuitive op-
erations that were possible in this way remained something
of a black art, as witnessed by the many papers that were
published on mapping specific algorithms to graphics hard-
ware, e.g. [HS99,KS00].

Offline rendering for animation had been using much
more general languages for a long time [HL90], and some
attempts were made to map them to a slightly extended ver-
sion of the fixed-function OpenGL pipeline [POAU00]. But
the real breakthrough came with actual programs that were
executed on the graphics hardware.

The first steps were assembly languages for register ma-
chines. This was a great step forward for generalizing graph-
ics hardware, but it had its limitations. The shading algo-
rithms were not easy to follow and it was hard to create
building blocks of functionality on which the rest of the
shader was built. The next natural step was a high-level lan-
guage built on top of the assembly. These languages often

look like C, both in syntax and semantics. There are also
metaprogramming languages built on top of a host language.
These allow tight integration between the host language and
the graphics processor as well as straightforward shader spe-
cialization.

With the advent of Cg’s interface features and looking at
shaders (i.e. a program or programs that runs on the GPU) as
elements of an algebra [MDP∗04], we’re just now starting to
see support for composable shaders.

In this work we introduce a shading language built on
modern functional languages and their pure semantics in-
stead of the procedural roots used before. The functional ap-
proach significantly simplifies compilation and analysis of
the program, opening up new avenues for more general op-
timizations and compositions.

2. Related Work

2.1. Multi-Pass Texture Blending

Real-time programmable shading appeared in an early form
as multi-pass rendering along with multi-texturing blend
modes. The Quake 3 engine for example provided a simple
shader scripting language to control the number of passes,
texture stages, and rendering states. This isn’t a complete
solution for general shading, but it goes a long way towards
allowing the implementation of several surface appearances.

submitted toGraphics Hardware (2005)



2 C. Austin & D. Reiners / Renaissance : A Functional Shading Language

Peercy, Olano et al. discovered that an OpenGL implemen-
tation, with some key extensions, can be treated as a general-
purpose SIMD computer in their OpenGL Shader work
[POAU00]. OpenGL Shader can support arbitrary shading
computation, using multiple rendering passes.

However, the trend for processors in general and graphics
processors specifically has gone towards higher clock speeds
on the processor, but slower and higher latency memory ac-
cess. This precludes large-scale multipass implementations
of shading from being viable, due to the very high memory
bandwidth requirements.

2.2. RTSL

Stanford’s real time programmable shading system, RTSL
[PMTH01], introduced the concept of computational fre-
quency. They defined four frequencies: constant, primitive
group, vertex, and fragment. Constant computation is done
at shader compile time and not during the processing of ge-
ometry. Primitive group computation is done per batch of
geometry, while vertex and fragment computations are done
per vertex and per fragment, respectively. RTSL has a retar-
getable backend that can map vertex computation to either
the CPU or to basic programmable vertex hardware. Frag-
ment computation is mapped to multi-pass OpenGL, as in
OpenGL Shader above, or early fragment processing hard-
ware like NVIDIA’s register combiners. Their shading lan-
guage did not separate vertex and fragment as the compiler
was responsible for splitting the work up among the various
computational stages. They allowed explicit specificationof
where computation is to be done; for example, to easily com-
pare two lighting algorithms, one per vertex and the other per
fragment.

2.3. Assembly Languages (ARBfp, ARBvp, DirectX
shader models)

The next generation of shading languages allowed full pro-
grammability at the vertex and pixel levels via assembly
languages for a vector based register machine architec-
ture. Although the instruction sets were limited at first,
the languages allowed arbitrary computation per vertex and
per fragment. They are more efficient than the multi-pass
approaches above, because they require much less mem-
ory bandwidth. One obvious disadvantage of assembly lan-
guages is that they are difficult for people to write and un-
derstand, as well as maintain, especially when programs get
larger. One principal advantage of assembly languages is that
they are directly executed by the underlying hardware. Due
to the variability of graphics hardware, between and within
vendors, this is rarely the case for shader languages, making
them less attractive.

2.4. Cg, HLSL

Naturally, the next step beyond an assembly language is a
high-level language that compiles to it. Cg [MGA03] and
HLSL were created by NVIDIA and Microsoft, respectively,
as C-like, high-level shading languages. HLSL compiles to
the Microsoft-defined DirectX vertex and pixel shader mod-
els, which are loaded into the card at runtime. Cg, on the
other hand, compiles to a variety of back ends and is graph-
ics API neutral. The most recent NVIDIA cards have support
for Cg in the driver itself, requiring no special compilation
step.

When referring to the language used by both Cg and
HLSL, I will call it simply Cg. For the sake of compatibil-
ity with other shading systems, and transparent access to the
underlying hardware, Cg does very little work for the user.
She is required to specify how data is transferred into the
shaders and which attribute channels map to what. By de-
sign, Cg also does not virtualize any resources, if a feature
is not available. One of Cg’s primary goals is to be as close
to the hardware as possible while maintaining a higher level
of abstraction.

2.5. GLSL

While Cg and HLSL were being developed, 3DLabs and the
OpenGL Architecture Review Board were designing a shad-
ing language for the future of OpenGL. The OpenGL Shad-
ing Language (GLSL [Ros04]) had different goals than Cg
and HLSL. It was intended to become part of the OpenGL
standard, replacing the assembly languages. OpenGL imple-
menters must have the shader compiler in the driver itself, as
opposed to an external process. This increases driver com-
plexity, but means that applications that use GLSL benefit
from driver upgrades and compiler improvements for free.
It is also a forward thinking language design in that it re-
quires all implementers to support things like conditionals
and loops even if they can’t do it in hardware. It requires vir-
tualization of resources not visible to the shader writer, such
as temporary registers and instruction count.

2.6. Sh

Sh [MQP02] isn’t exactly a language, per se. It is a metapro-
gramming system on top of C++ designed for building
shaders. Sh is implemented through a set of custom C++
objects that build an internal program representation when
operations are applied to them. This program is compiled
to an underlying shader that is run directly on the graphics
card. The advantage of a metaprogramming system such as
this is that it has very tight integration with the host lan-
guage. If the shader references a global variable, and assign-
ments are made to that global variable outside the definition
of the shader, the data is automatically passed in as a uni-
form. Also, it is natural to use the host language’s featuresin

submitted toGraphics Hardware (2005)



C. Austin & D. Reiners / Renaissance : A Functional Shading Language 3

order to specialize shaders. For example, if the shader con-
tains anif statement, two different shaders may be generated,
based on the outcome of the condition.

Sh’s primary disadvantage is that it requires a full C++
compiler to use a shader. Thus, shaders can’t easily be passed
along with 3D models, limiting their usefulness to people
who aren’t programmers. That said, there are some uses for
shaders where a metaprogramming approach is ideal; such
as implementation of custom graphics algorithms tightly
bound to the application.

2.7. Vertigo

Vertigo [Ell04] is a metaprogramming system like Sh, but
built on top of Haskell instead of C++. The interesting as-
pects of Vertigo are that it is a functional language and uses
expression rewriting for optimization. Expression rewriting
allows it to do an optimal search of expression space to
reduce the amount of computation necessary in a particu-
lar evaluation. A compelling example is that of vector nor-
malization. Vector normalization is a common operation in
graphics programs. When writing a procedure, there is a
choice between accepting a normalized vector or a poten-
tially non-normalized vector and then normalizing it explic-
itly. Since normalization is expensive, normalizing a vector
twice should be avoided. However, in a functional language
it is possible to take advantage of referential transparency
and expression rewriting to reduce the expression "normal-
ize (normalize v)" to "normalize v". Once this optimization
is available, there is no reason not to normalize a vector, ifit
needs to be. Redundant normalize calls are optimized away.
Vertigo shows how this is done in an elegant and automatic
way.

3. Contributions

In this paper we introduce a programming language for real-
time graphics hardware that we believe addresses many of
the problems in the existing languages, discussed above.
This language draws from research in modern, pure func-
tional languages, such as Miranda, Haskell, and Clean. We
base our design on functional languages for a variety of rea-
sons. First, functional languages are a very natural fit to the
programming model exposed by graphics hardware. Second,
functional languages are traditionally easier to efficiently
compile than imperative languages with side effects, such
as C. Third, our language is designed to have a minimum of
extraneous syntax, making it much easier to learn and read.

This paper’s primary contributions are the following:

• A pure functional programming language with a straight-
forward semantic model and syntax

• Automatic computational frequency inference for optimal
partitioning of program execution to four stages of the
graphics pipeline

• Natural shader composability that follows naturally from
the simple execution model and frequency inference

4. Key Design Decisions

4.1. Functional Model

Renaissance is based on the syntax and semantics of mod-
ern, typed, pure functional languages, specifically the family
consisting of Miranda, Haskell, Clean. Since we don’t ex-
pect our audience to be familiar with the syntax or semantics
of these languages, the following will introduce the look and
feel with an example.

pi = 3.1415927
square x = x * x
circumference r = pi * square r

The first line defines a namepi to have an approximate
value of pi. The second line defines a function calledsquare

that takes one parameter and returns its square. The third
line defines the circumference, given a radius, to be pi times
the square of the radius.square r is the syntax for function
application, and it means "apply the function square to the
value r". Notice that the example does not make any types
explicit. Types are inferred based on a definition’s expression
and any arguments. So, above,pi has typefloat . square’s type
is t -> t , meaning "a function that takes type t and returns type
t", where t is the type of the arguments. Sosquare 10 has
type int andsquare 10.0 has typefloat . This type inference is
discussed in detail later.

There are no loops or variable assignments in this lan-
guage. Every object, once created, cannot be changed. This
is called referential transparency, which refers to the fact that
if the same function twice is called twice with the same ar-
guments, the same result will be returned.

Modern GPUs have a stream programming model: there is
a stream of data elements (vertices or fragments) and a func-
tion is applied across all of them. This function, in stream
programming terminology, is called a kernel. Since all of
the stream elements are independent, the function can be run
in parallel without any sort of synchronization or data de-
pendency analysis. This is largely the reason why graphics
processors these days are so efficient: performance increases
linearly with the number of processors available. Previous
shading languages have semantic models similar to C; that
is, variables that can be modified and read from. Further, the
order statements are executed is critical. Consider the C-like
code in figure1.

The value ofa at the end ofmain() is either 9 or 5, depend-
ing on whetherfoo() or bar() is called first. In general, this
restriction complicates the compiler’s task of optimization
and static analysis. A functional language, on the other hand,
is given a lot of freedom to reorder evaluations, because all
dependencies are explicit and no evaluation has side effects.
For specialized tasks, functional languages have been shown
to perform much more efficiently than equivalent C code.

submitted toGraphics Hardware (2005)



4 C. Austin & D. Reiners / Renaissance : A Functional Shading Language

int a = 1;
int foo() {
a += 2;
// Some code.
return 10;

}
int bar() {
a *= 3;
// Other code.
return 15;

}
void main() {
int sum = foo() + bar();
// do something with a

}

Figure 1: C code example

As hardware programmability increases in capability and
shaders get longer and larger, we believe a functional lan-
guage will scale in both performance and maintainability
more than a language based on the imperative model of C.

Even ignoring the performance and “compiler-friendly”
issues, functional languages are a better mental model for
the humans writing shaders as well. They make explicit that
an operation on a stream element has no side effects beyond
the output value. Other shading languages must explicitly
document that modifications to global variables do not affect
the program’s operation on other stream elements.

4.2. Frequency and Type Inference

Renaissance is a statically typed language, as in C++, other
shading systems, and most pure functional languages. That
is, the type of an expression is associated with its name, not
its value. However, Renaissance infers the type of an expres-
sion from context, so no types need be specified explicitly.
Consider:

foo a b = a + bar b
bar b = b + 2
result = foo 10 4

Notice that no types are explicitly specified. However,
whenresult is evaluated,foo is called with two integers and
returns the sum of the first andbar of the second. The result
of this addition is an integer as well, so the valueresult has
typeint . Consider the definition of a function that normalizes
a vector:

normalize v = v / length v

The operation of the function is clear even though its ar-
gument and return types are not specified. This has a sur-
prising side effect: thenormalize function actually represents
several functions, each of different type. Given that division
by a scalar and the length function can operate on multiple
types of vectors, normalize will work with any vector. This
is similar in practice to C++ template functions.

Alongside each expression’s type, we also maintain a
computational frequency, a concept introduced by Stanford’s
RTSL. There are four frequencies: constant (per compile),
uniform (per primitive group), vertex (per vertex), and frag-
ment (per fragment). Built-in shader inputs each have a spec-
ified frequency. For example,gl_Vertex has the frequency
vertex . gl_FragCoord has the frequencyfragment . If an op-
eration on two expressions that have different frequenciesis
performed, the resulting expression usually has the higherof
the two. One exception is theif construct: if the condition has
constant frequency, theif is evaluated at compile-time, and,
if true, the resulting frequency is the frequency of theif-true

expression. Otherwise, it is the frequency of theif-false ex-
pression.

Outputs have a required frequency as well. Thegl_Position

output has frequencyvertex andgl_FragColor output has fre-
quencyfragment . It is an error to definegl_Position to be an
expression with frequencyfragment . Outputs must have fre-
quency less than or equal to their definition. Now assume
that gl_FragColor depends on the normalized, transformed
normal:

gl_FragColor = dependsOn (
normalize (gl_NormalMatrix * gl_Normal))

gl_NormalMatrix has frequencyuniform andgl_Normal has
frequencyvertex . Thus, the normal transformation can be
done on the vertex processor. It looks at first glance like the
normalize call can be moved up to the vertex processor too,
but, since it is a nonlinear operation and the fragment inter-
polators linearly interpolate, the normalization must be done
on the fragment processor. Conceptually, all operations are
done on the fragment processor, and lifted to earlier stages
of the pipeline if possible.

4.3. Single Shader for Both Vertex and Pixel Pipelines

In contrast with the most popular real-time shading lan-
guages today, Cg, HLSL, and GLSL, we decided to blur
the distinction between vertex shaders and fragment shaders.
One concern raised by NVIDIA in the design of Cg is
that the different processors support different functionality,
and by making the programs explicitly separate, the dif-
ferences are made clear [MGA03]. However, recent trends
suggest that the vertex and fragment processors will grow
closer in functionality, rather than farther apart. Mircrosoft’s
new graphics standard, the Windows Graphics Foundation
(WGF, aka DirectX 10) is pushing for a unified processor
architecture for both the vertex and fragment parts of the
pipeline [Bly04]. ATI technology has also recently been is-
sued a patent on a multi-threaded graphics core that hides
the distinction between vertex and fragment units [LGM05,
Bau05]. With this in mind, we feel the potential confu-
sion caused by executing "one" program on two potentially-
different processors (in addition to the CPU) is worth the
benefit in improved shader clarity, maintainability, and opti-
mization.

submitted toGraphics Hardware (2005)



C. Austin & D. Reiners / Renaissance : A Functional Shading Language 5

To mitigate the potential confusion brought about by this
approach, we may allow specification of computational fre-
quency explicitly, as RTSL does. If a lower frequency is
specified for a result than the values it depends on (for exam-
ple, if it is claimed that a result has a frequency ofvertex but
it depends on thefragment -frequencygl_FragCoord value), a
compile-time error is raised. Conversely, explicitly specify-
ing a higher frequency than would be inferred would force
computation to occur later in the pipeline, which could be a
performance improvement in some cases.

4.4. Shaders As Data Files

Following the example set by Cg and GLSL, it is critical
that shaders can be treated as data files so that they can
travel along with the models whose surfaces they describe.
Requiring a compilation step before being able to load or
use a shader greatly increases the amount of time it takes
to iterate changes, especially for shader building tools and
people who aren’t programmers. For this reason, the ap-
proach taken by metaprogramming shading systems is infea-
sible for many uses of shaders, such as in games and model-
ing software. The convenience of being able to use a fully-
featured general-purpose language for generation of your
shaders is offset by the requirement of having a complete
C++ or Haskell compiler in order to use your shaders at all.
Further, the basis of functional programming languages, the
lambda calculus, provides a high degree of abstraction and
notational convenience even with a naïve implementation
[Jon87]. Therefore, we can provide many of the important
features of other high-level languages, such as higher-order
functions and specialization, with a minimum of effort. Also,
Vertigo shows that an optimizing compiler from a functional
language to GPU architectures is relatively straightforward,
especially compared to an optimizing C compiler. In short,
we believe a “small” functional language with a simple and
powerful semantic model can satisfy the needs of shaders
just as well as the metaprogramming systems, without the
requirement of a host environment.

5. System Overview

The Renaissance system is implemented in C++ and split
into two pieces: the language, including its compiler, and the
shader management API. For simplicity of implementation
and to leverage the extensive design work that went into the
OpenGL Shading Language, we have chosen GLSL as the
basis for a large portion of our language.

When the program loads a shader, it is parsed, validated,
and type checked into an intermediate program structure.
The program can then set the value of any constant inputs.
When the program is bound, it is compiled into code that
can run on the GPU, optimized for the constant values that
have been set. This part is what enables efficient specializa-
tion and composition. The generated code is cached with the

constants used to create it so recompilation is not necessary
when switching back and forth between shader states.

Setting uniforms and attributes does not invoke recompi-
lation, since their values do not affect the structure of the
generated code.

One of the niceties of metaprogramming languages is that
the interface between the host program and the shader is very
convenient, since it can use native data types and structures.
Contrast this with the OpenGL Shading Language APIs
which require querying and managing uniform indices, and
use function names with ’warts’ to distinguish between set-
ting different uniform types: glUniform1f and glUniform2i
etc. We can get close to the convenience of a metaprogram-
ming language by providing custom C++ types that hide the
internal data transfers.

ren::Bool enableBones(program, "enableBones");

enableBones = true;
program->bind(); // Compiles if necessary.

enableBones = false;
program->bind(); // Compiles if necessary.

enableBones = true;
program->bind(); // Does not compile, already done.

The next two sections define the language and the com-
piler in more detail.

6. Language Description

The syntax and semantics of Renaissance are very similar to
the languages Miranda, Haskell, and Clean.

A program consists of two components: inputs and def-
initions. Each is separated by a newline. (Renaissance is
whitespace-sensitive.)

6.1. Inputs

There are three types of inputs, one for each of the first three
computational frequencies: constants, uniforms, and vertex
attributes. Constant values are taken into account at com-
pile time, uniforms at primitive group time, and attributes
per vertex. Since their type cannot be inferred, it must be
made explicit:

constant bool enablePerPixelLighting
uniform mat3 colorMatrix
attribute float temperature

6.2. Definitions

A definition either specifies a value or a function, with the
general form:

name (arguments)* = expression

submitted toGraphics Hardware (2005)



6 C. Austin & D. Reiners / Renaissance : A Functional Shading Language

value = 2 + 2
function arg1 arg2 = arg1 / arg2

value is a value of type int and function is a function
of type s * t -> u (takes two values of potentially different
types and returns the type of dividing the first by the sec-
ond). function ’s return type is not evaluated until it is called
with arguments. In this sense,function actually refers to a
template of possible functions which are instantiated when
called.

Expressions consist of infix operators and function appli-
cations. Precedence of operations is the same as in GLSL.
Operators are discussed more fully in a later section.

Evaluation of functions is done lazily, as in Miranda,
Haskell, and Clean. This prevents redundant code genera-
tion:

constant bool doExpensive
choose expensive cheap =

if doExpensive then expensive else cheap
gl_FragColor = choose ExpensiveCalculation CheapCalculation

The arguments tochoose are only evaluated if necessary;
that is, if doExpensive is true at compile time, then only
ExpensiveCalculation will be performed. Otherwise, only
CheapCalculation will be performed. Lazy evaluation is nec-
essary for optimal specialized code generation.

6.3. Types

Following the conventions set by GLSL, we provide the fol-
lowing types:bool , int , float , and vectors of 2 to 4 elements
of each. (vec2 is a vector of two floats,vec3b is a vector of
three bools,vec4i is a vector of four integers, etc.) There are
also three square, float matrix types:mat2 , mat3 , andmat4 .
Texture samplers have typesampler1D , sampler2D , etc. just
as in GLSL.

Arrays have type[t] where t is the type of its elements.
Since shading hardware does not yet support variable-length
arrays, the length of the array must be specified atconstant

frequency. In order to access the i-th element of an array, it
is treated as a function and called with parameteri.

In Renaissance, there are no implicit type conversions.
2 + 2.0 is a type error, requiring a constructor conversion:
float 2 + 2.0

6.4. Built-In Functions, Operators, and State

As with types, we provide access to all GLSL built-in func-
tions, with the same names, types, and overloads. Texture
access is done as in GLSL, with the exception that sampler
types may be called as functions with the lookup coordinates
as the parameter.

All of GLSL’s built-in infix operators are avail-
able in Renaissance, with the same precedence. Func-
tion calls have the highest precedence, but parenthe-
ses are available and operate as expected. A new++

operator is defined as vector concatenation, replacing
GLSL’s vector constructors. Given two floats, concatenat-
ing them with++ returns a 2-element vector. For example,
(vec3 1.2 3.4 5.6) ++ 7.8 -> vec4 (1.2 3.4 5.6 7.8)

All GLSL state is exposed in Renaissance as expected.

6.5. Overloading and Swizzling

Renaissance supports what is known as ad-hoc polymor-
phism, or overloading, based on the number and type
of arguments. For example, the expressionsvec4 1.0 and
vec4 1.0 1.0 1.0 1.0 are equally valid and have the same re-
sult, since the first is an overloaded constructor that fills the
vector with its one argument. There is a built-inlength func-
tion which takes any vector of size 1 to 4 and returns its
length. Renaissance defines a special dot operator (.) (simi-
lar to the language Nice) that calls the right hand side with
the left hand side as its argument. This meanslength vec

and vec.length are equivalent. This has the nice property
that vector swizzling (vec.xyz ) can be defined entirely within
the standard library, although, for performance reasons, it is
special-cased.

6.6. Composability

As graphics teams begin to replace the entire fixed function
pipeline with their own shading algorithms, the restriction
that shaders must replace the entire pipeline becomes an
increasing problem. Moreover, it is nontrivial to write two
independent pieces of the shading algorithms and combine
them into one shader at runtime, even if they are independent
in definition. Some have solved this problem with elaborate
preprocessors that combine the pieces into one shader that
does not do any redundant computation. Valve’s Half-Life 2,
for example, builds over 1500 shaders as part of their build
process by combining pieces of them with a preprocessor.

As a consequence of the functional programming model
and frequency inference, Renaissance naturally supports
composition, as demonstrated by the following example
code:

constant bool useLightingModel1
lightModel1 = ... # calculations for light model 1
lightModel2 = ... # calculations for light model 2
gl_FragColor = if useLightingModel1 then lightModel1

else lightModel2

Since the variableuseLightingModel1 has constant fre-
quency, it is evaluated at shader compilation time. Thus, the
shader is specialized based on its value, with no extra com-
putation per fragment.

6.7. Abstraction Facilities

Traditionally a vertex program that applies skeletal anima-
tion bone transformations to each vertex looks something
like this:

submitted toGraphics Hardware (2005)



C. Austin & D. Reiners / Renaissance : A Functional Shading Language 7

uniform [mat4] bones
attribute vec4 boneIndices
attribute vec4 weights

v0 = weights.x * ((bones boneIndices.x) * gl_Vertex)
v1 = weights.y * ((bones boneIndices.y) * gl_Vertex)
v2 = weights.z * ((bones boneIndices.z) * gl_Vertex)
v3 = weights.w * ((bones boneIndices.w) * gl_Vertex)
vertex = v0 + v1 + v2 + v3
gl_Position = gl_ModelViewProjectionMatrix * vertex

This program has much duplicated logic and is hard-
coded for the number of bones applied to each vertex. One
improvement would be to use a for loop or iteration con-
struct to iterate over the bone references. This would reduce
the duplicated logic, but compilers for these languages do
not claim to unroll loops and may even cause the shader to
be virtualized onto the CPU if loops aren’t supported by the
underlying hardware. Given frequency inference and higher-
order-functions, however:

constant bool enableBones

uniform [mat4] bones
attribute vec4 boneIndices
attribute vec4 weights

skinnedVertex =
sum [(weights i) * (bones (boneIndices i)) * gl_Vertex)

for i in (range 0 3)]
vertex = if enableBones then skinnedVertex else gl_Vertex
gl_Position = gl_ModelViewProjectionMatrix * vertex

The syntax[expr for var in list] is called a list comprehen-
sion. A new list is created by evaluatingexpr on every item
in list . In this case, the new list contains weighted vertices,
which must be summed to get the result. The sum function
takes a list and returns the result of adding all its elements.
Since the length of the list has constant frequency, it is auto-
matically unrolled.

It may seem strange that the vectorweights is being called
as a function, with an index as a parameter. But, since the
index hasconstant frequency,weights 0 is compiled into
weights.x , weights 1 is compiled intoweights.y , etc...

This version of the shader provides a simple switch to en-
able and disable bone application at compile time.

7. Runtime Description

7.1. Compiler Backend

As mentioned above, we are building Renaissance upon
GLSL. It is a strong foundation for our functional language.
Also, several functional languages compile to C as it makes a
very effective "portable assembly language". Nothing in the
language itself prevents other backends from being added in
the future, however.

Shaders have special output definitions that are the ones

actually responsible for generating code. Ifgl_Position is de-
fined, for example, it must have typevec4 and frequency
of vertex or less. Its evaluation becomes part of the ver-
tex program. If it and all othervertex -frequency outputs
are not defined, a vertex program is not generated at all
and the fixed function pipeline is used. If any othervertex -
frequency is defined,gl_Position must also be defined. (In
GLSL, vertex programs must output at least a position.)
gl_FragColor has the same restriction forfragment -frequency
outputs. These output variables can also be assigned the spe-
cial valueundefined , which is equivalent to not giving a def-
inition at all. This is used in the following situation:

gl_FragColor = if enablePerPixelShading then getColor
else undefined

The reason the special valueundefined is necessary can be
demonstrated by a shader that can switch between per-vertex
and per-fragment lighting. When vertex lighting is enabled,
we may not need a fragment program at all: the fixed func-
tion pipeline may do just fine. In that case, we want a way
to define whatgl\_FragColor is, while providing a switch that
specifies whether it should generate an output or not.

# Uniforms.
uniform vec3 LightPosition
uniform vec3 BrickColor
uniform vec3 MortarColor
uniform vec2 BrickSize
uniform vec2 BrickPct
# Constants.
SpecularContribution = 0.3
DiffuseContribution = 1.0 - SpecularContribution
# Transform.
gl_Position = ftransform
ecPosition = (gl_ModelViewMatrix * gl_Vertex).xyz
tnorm = normalize (gl_NormalMatrix * gl_Normal)
# Lighting.
lightVec = normalize (LightPosition - ecPosition)
reflectVec = reflect (-lightVec) tnorm
viewVec = normalize (-ecPosition)
diffuse = max (dot lightVec viewVec) 0.0
spec = if (diffuse > 0.0) then s else 0.0

where s = pow (max (dot reflectVec viewVec) 0.0) 16.0
LightIntensity = DiffuseContribution * diffuse +

SpecularContribution * specular
# Brick.
position = gl_Vertex.xy / BrickSize + (vec2 xoffset 0.0)

where xoffset = if fract (position.y * 0.5) > 0.5 then
0.5 else 0.0
useBrick = step (fract position) BrickPct
color = mix MortarColor BrickColor amount

where amount = useBrick.x * useBrick.y * LightIntensity
# gl_FragColor should have
type vec4gl_FragColor = color ++ 1.0

Figure 2: Brick shader

Fig.2 shows the standard OpenGL brick shader translated
directly into Renaissance.

submitted toGraphics Hardware (2005)



8 C. Austin & D. Reiners / Renaissance : A Functional Shading Language

8. Future Work

While Renaissance satisfies our expectations, there are
clearly areas that we feel we could improve it. First, com-
position and specialization of shaders in our system requires
that everything is written and compiled in one file. A “link-
ing” or “module” system would allow users to write inde-
pendent concepts by themselves and then combine them as
needed. Similarly, we would like to extend the concept of
functional graphics up to the level of multi-pass effects and
state specifications. As Vertigo shows so eloquently, func-
tional programming is a perfect fit for many concepts in
computer graphics.

Our research was focused on implementing high-level op-
timizations such as specialization without redundant code.
We would like to apply Vertigo’s expression rewriting sys-
tem so that we can generate efficient code at the instruction
level as well. Along the same lines, additional backends for
the assembly language shading languages are an obvious im-
provement.

Finally, since a functional language provides a clear, un-
ambiguous specification of the dependencies in the pipeline,
implementing shader debugging and virtualization on top of
Renaissance is a nice opportunity.

9. Conclusion

As programmable graphics hardware becomes more preva-
lent and instruction and memory limitations are lifted and
removed, a next generation shading language will need to re-
duce the complexities associated with transferring data and
calculations from the host application all the way down to
the pixels on the screen.

This paper describes Renaissance, a shading language
for modern programmable GPUs that, through the benefits
of functional programming, enables efficient and clear al-
gorithm specifications across multiple stages of the graph-
ics pipeline. Through a simple semantic model and fre-
quency inference, natural composability of shading “con-
cepts” is possible, which existing languages make difficult
at best. Extending this simple concept, we can imagine a
programmable shading system with configurable state that
can be flipped on and off, just like the interface to the fixed
function pipeline.

10. Acknowledgments

We would like to thank Conal Elliot for his work on Vertigo
while at Microsoft Research – without it we would not have
gotten far. Thanks also goes to Simon Peyton-Jones at Mi-
crosoft Research for his work on the Haskell language and
for releasing his out-of-print book The Implementation of
Functional Programming Languages. Finally, Dusty Leary
and his infectious love of functional programming greatly
influenced the design of the language.

References

[Bau05] BAUMANN D.: Ati multi-threading patent
- for wgf2.0 and xenon graphics? Beyond 3D
(www.beyond3d.com), 2005.

[Bly04] BLYTHE D.: Windows graphics foundation. Pre-
sentation at WinHEC 2004, 2004.

[Ell04] ELLIOTT C.: Programming graphics processors
functionally. In Proceedings of the 2004 Haskell Work-
shop(2004). http://conal.net/papers/Vertigo/.

[HL90] HANRAHAN P., LAWSON J.: A language for
shading and lighting calculations. InSIGGRAPH ’90:
Proceedings of the 17th annual conference on Com-
puter graphics and interactive techniques(New York, NY,
USA, 1990), ACM Press, pp. 289–298.

[HS99] HEIDRICH W., SEIDEL H.-P.: Realistic, hardware
accelerated shading and lighting.ACM Trans. Graph.
(1999), 171–178.

[Jon87] JONES S. L. P.: The Implementation of Func-
tional Programming Languages. Prentice Hall, 1987.

[KS00] KAUTZ J., SEIDEL H.-P.: Towards interactive
bump mapping with anisotropic shift-variant BRDFs.
In Proceedings of the 2000 ACM/SIGGRAPH Graphics
Hardware Workshop(2000), pp. 51–58.

[LGM05] L EFEBVREL., GRUBER A., MOREIN S.: U.s.
patent: Multi-thread graphic processing system, 2005.

[MDP∗04] MCCOOL M., DU TOIT S., POPA T., CHAN

B., MOULE K.: Shader algebra.ACM Trans. Graph. 23,
3 (2004), 787–795.

[MGA03] M ARK W., GLANVILLE S., AKELEY K.: Cg:
A system for programming graphics hardware in a c-like
language. InSiggraph 2003, Computer Graphics Pro-
ceedings,(2003), ACM Press / ACM SIGGRAPH / Ad-
dison Wesley Longman.

[MQP02] MCCOOL M., QIN Z., POPA T.: Shader
metaprogramming. InProceedings of the 2002
ACM/SIGGRAPH Graphics Hardware Workshop(2002),
pp. 57–68.

[PMTH01] PROUDFOOT K., MARK W. R., TZVETKOV

S., HANRAHAN P.: A real-time procedural shading sys-
tem for programmable graphics hardware. InSiggraph
2001, Computer Graphics Proceedings,(2001), ACM
Press / ACM SIGGRAPH / Addison Wesley Longman.

[POAU00] PEERCY M. S., OLANO M., A IREY J., UN-
GAR P. J.: Interactive multi-pass programmable shad-
ing. In Siggraph 2000, Computer Graphics Proceedings,
(2000), Akeley K., (Ed.), ACM Press / ACM SIGGRAPH
/ Addison Wesley Longman, pp. 425–432.

[Ros04] ROST R. J.:OpenGL(R) Shading Language. Ad-
dison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 2004.

submitted toGraphics Hardware (2005)


