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1 GENERAL INTRODUCTION

Introduction

Real-time computer graphics hardware has experiencedotutiem in the last decade. The days
of low-polygon, flat-shaded scenes has long passed: modaphigs accelerators are capable of stag-
gering amounts of geometric detail as well as custom light material properties on every triangle.
Consumer hardware, driven primarily by games, has caughd apd surpassed the traditional work-
station graphics processors. In terms of sheer floatingt ppierations per second, modern graphics
processors (GPUSs) are significantly faster than even gepenaose CPUs. [11]

With this increase in raw power, we have also seen a drastiease in the flexibility of GPUs.
Early GPUs had limited shading capabilities — the best onddcbope for was the ability to blend
between multiple textures, maybe even with a custom bleedabipn. Now we have the ability to per-
form arbitrary calculation on any geometric or color datatpassed down the graphics pipeline, by
uploading custom programs, called shaders, written in s@nally language or even C-like languages
[16, 22] to the graphics card. Witlifectively infinite instruction limits and large amounts aijgorary
storage, the limiting factor in a shading algorithm is thelGPspeed.

The programmability of these processors has come at a ¢asiprogrammer wishes to execute
any custom operations, the entire programmable stage pfieéne must be implemented. The vertex
transformation part of the pipeline can’t be customizeduwit implementing lighting as well. This is
unlike the traditional fixed-function pipeline, where ligig, texturing, and other graphics processing
could all be enabled or configured separately. This probleshader non-orthogonality could prevent
shaders from becoming a standard part of every graphicsgrogAdditionally, shaders require a fair
amount of additional work over the fixed function pipeline fioost graphics tasks.

We have a developed Renaissance, a new shading language ohtt® OpenGL Shading Lan-



guage that addresses these problems. It was designed wighgbals in mind:

¢ Allow shaders to have functionality switched on arféiwithout reducing functionality at run-

time, like the fixed-function pipeline.
¢ Tight integration with the host language to bring shadeetimyment to a wider audience.

e To explore a functional programming model for the prograri@araphics pipeline.

Thesis Organization

This thesis is organized in the form of three scientific pajpeepared for submission to conferences
or journals. Each paper captures one core aspect of tharsgsta whole, and they are all written for
different audiences. We will now introduce each paper and shawtits into this thesis.

The first paper, Renaissance: A Functional Shading Languisggended for a graphics audience,
likely very familiar with existing shading systems. It iattuces the project and shows how the existing
shading systems have led up to this research. It also egplatndesign of the language and briefly
discusses the operation of the compiler and runtime.

The second paper, The Implementation of a Functional Sgddamguage, focuses, as the title
implies, on the algorithms and techniques required to implet the language. It shows implementation
feasibility and some of the interesting results of applyingure functional language to the shading
problem domain. This paper is written for a programming leages audience.

Finally, the third paper is an evaluation of the Renaissamitie a human factors approach. An
analysis of the language is provided with the help of a h&arieol, the cognitive dimensions, and a
usability study is designed to test some parts of the sysiéns.paper is written for an HCI audience.

Each paper contains a review of existing literature on tlevamt subjects.



2 RENAISSANCE: A FUNCTIONAL SHADING LANGUAGE

A paper to be submitted 43D 2006: Symposium on Interactive 3D Graphics and Games

Chad Austit and Dirk Reineré

Abstract

Programmable graphics hardware is growing in capability fexibility at a rapid pace. Exist-
ing languages for programming this hardware makeflialilt at best to build collections of custom
graphics algorithms that can be combined as needed. Wenpi@geire functional shading language,
Renaissance, that uses the concepts of computationakfreguand frequency inference to naturally
allow composition of shader concepts without generatidgimeant code. We also provide most of the

benefits of metaprogramming languages without the resinictf requiring a full host environment.

Introduction

The most important innovation in computer graphics haréwarer the last decade has been the
introduction of programmability. Textures were a first stewards fine-grain control over the rendered
pixels, and together with multi-pass rendering and lateltifrextured pipeline configurability they
allowed some basic implementations of user-specific caticuis in the graphics hardware. But map-
ping general algorithms to the very limited and non-inigitoperations that were possible in this way
remained something of a black art, as witnessed by the mamgreghat were published on mapping

specific algorithms to graphics hardware, e.g. [12, 14].

1Graduate student, primary author and researcher
2Assistant Professor, Department of Computer Science, 8tate University



Offline rendering for animation had been using much more gelmrgliages for a long time [10],
and some attempts were made to map them to a slightly extedsion of the fixed-function OpenGL
pipeline [20]. But the real breakthrough came with actualgpams that were executed on the graphics
hardware.

The first steps were assembly languages for register machirteés was a great step forward for
generalizing graphics hardware, but it had its limitatio$e shading algorithms were not easy to
follow and it was hard to create building blocks of functibtyaon which the rest of the shader was
built. The next natural step was a high-level language lomiltop of the assembly. These languages
often look like C, both in syntax and semantics. There are mistaprogramming languages built
on top of a host language. These allow tight integration betwthe host language and the graphics
processor as well as straightforward shader specializatio

With the advent of Cg's interface features and looking atlshs(i.e. a program or programs that
runs on the GPU) as elements of an algebra [18], we're juststamting to see support for composable
shaders.

In this work we introduce a shading language built on modenttional languages and their pure
semantics instead of the procedural roots used before.ufiwéidnal approach significantly simplifies
compilation and analysis of the program, opening up newwefor more general optimizations and

compositions.

Related Work

Multi-Pass Texture Blending

Real-time programmable shading appeared in an early formuds-pass rendering along with
multi-texturing blend modes. The Quake 3 engine for exanppdvided a simple shader scripting
language to control the number of passes, texture stageseadering states. This isn’t a complete
solution for general shading, but it goes a long way towalilisvang the implementation of several
surface appearances. Peercy, Olano et al. discoverednti@penGL implementation, with some key
extensions, can be treated as a general-purpose SIMD cemipuheir OpenGL Shader work [20].

OpenGL Shader can support arbitrary shading computatsingumultiple rendering passes.



However, the trend for processors in general and grapharepsors specifically has gone towards
higher clock speeds on the processor, but slower and higkemdy memory access. This precludes
large-scale multipass implementations of shading fronmgpeiable, due to the very high memory

bandwidth requirements.

RTSL

Stanford’s real time programmable shading system, RTSI, jBfroduced the concept of com-
putational frequency. They defined four frequencies: @misiprimitive group, vertex, and fragment.
Constant computation is done at shader compile time andumisigithe processing of geometry. Prim-
itive group computation is done per batch of geometry, widlgex and fragment computations are
done per vertex and per fragment, respectively. RTSL hataggetable backend that can map vertex
computation to either the CPU or to basic programmable xdréedware. Fragment computation is
mapped to multi-pass OpenGL, as in OpenGL Shader above rlgrfegment processing hardware
like NVIDIAs register combiners. Their shading languaged dot separate vertex and fragment as
the compiler was responsible for splitting the work up amtiregvarious computational stages. They
allowed explicit specification of where computation is todmae; for example, to easily compare two

lighting algorithms, one per vertex and the other per fragine

Assembly Languages (ARBfp, ARBvp, DirectX shader models)

The next generation of shading languages allowed full piognability at the vertex and pixel
levels via assembly languages for a vector based registehinearchitecture. Although the instruction
sets were limited at first, the languages allowed arbitrampgutation per vertex and per fragment.
They are morefécient than the multi-pass approaches above, because tigyerenuch less memory
bandwidth. One obvious disadvantage of assembly langusitiest they are diicult for people to write
and understand, as well as maintain, especially when progoget larger. One principal advantage of
assembly languages is that they are directly executed hynitherlying hardware. Due to the variability
of graphics hardware, between and within vendors, thisreydhe case for shader languages, making

them less attractive.



Cg, HLSL

Naturally, the next step beyond an assembly language istaléigl language that compiles to it.
Cg [16] and HLSL were created by NVIDIA and Microsoft, restpegly, as C-like, high-level shading
languages. HLSL compiles to the Microsoft-defined Direceftex and pixel shader models, which
are loaded into the card at runtime. Cg, on the other handpitesnto a variety of back ends and is
graphics API neutral. The most recent NVIDIA cards have suiior Cg in the driver itself, requiring
no special compilation step.

When referring to the language used by both Cg and HLSL, Iaailll it simply Cg. For the sake
of compatibility with other shading systems, and transpaeecess to the underlying hardware, Cg
does very little work for the user. She is required to spebifyv data is transferred into the shaders
and which attribute channels map to what. By design, Cg at&s ahot virtualize any resources, if a
feature is not available. One of Cg’s primary goals is to belase to the hardware as possible while

maintaining a higher level of abstraction.

GLSL

While Cg and HLSL were being developed, 3DLabs and the OpeffBhitecture Review Board
were designing a shading language for the future of Open@&.QpenGL Shading Language (GLSL
[22]) had diferent goals than Cg and HLSL. It was intended to become painecDpenGL standard,
replacing the assembly languages. OpenGL implementerstraus the shader compiler in the driver
itself, as opposed to an external process. This increages domplexity, but means that applications
that use GLSL benefit from driver upgrades and compiler ivgmeents for free. It is also a forward
thinking language design in that it requires all implement® support things like conditionals and
loops even if they can't do it in hardware. It requires vifization of resources not visible to the

shader writer, such as temporary registers and instructiont.

Sh

Sh [17] isn't exactly a language, per se. It is a metaprograngreystem on top of €+ designed

for building shaders. Sh is implemented through a set ofooust++ objects that build an internal



program representation when operations are applied to.tAdris program is compiled to an under-
lying shader that is run directly on the graphics card. Theaathge of a metaprogramming system
such as this is that it has very tight integration with thethasguage. If the shader references a global
variable, and assignments are made to that global variaitétde the definition of the shader, the data
is automatically passed in as a uniform. Also, it is natunalige the host language’s features in order
to specialize shaders. For example, if the shader contairi€ atatement, two dierent shaders may
be generated, based on the outcome of the condition.

Sh’s primary disadvantage is that it requires a ful4«Ccompiler to use a shader. Thus, shaders
can't easily be passed along with 3D models, limiting thekfulness to people who aren’t program-
mers. That said, there are some uses for shaders where aogetapming approach is ideal; such as

implementation of custom graphics algorithms tightly bdvom the application.

Vertigo

Vertigo [7] is a metaprogramming system like Sh, but builtop of Haskell instead of €+. The
interesting aspects of Vertigo are that it is a functionablzage and uses expression rewriting for op-
timization. Expression rewriting allows it to do an optinsgarch of expression space to reduce the
amount of computation necessary in a particular evaluatlorcompelling example is that of vector
normalization. Vector normalization is a common operaiiom@raphics programs. When writing a
procedure, there is a choice between accepting a normaliedr or a potentially non-normalized
vector and then normalizing it explicitly. Since normatira is expensive, normalizing a vector twice
should be avoided. However, in a functional language it issfiile to take advantage of referen-
tial transparency and expression rewriting to reduce tlpgessionnormalize (normalize v) to
normalize v. Once this optimization is available, there is no reasontmeiormalize a vector, if it
needs to be. Redundant normalize calls are optimized awestig¥ shows how this is done in an

elegant and automatic way.



Contributions

In this paper we introduce a programming language for iiga-graphics hardware that we believe
addresses many of the problems in the existing languagssyssied above. This language draws
from research in modern, pure functional languages, sudimnda, Haskell, and Clean. We base
our design on functional languages for a variety of reasdfisst, functional languages are a very
natural fit to the programming model exposed by graphicsvharel Second, functional languages are
traditionally easier toficiently compile than imperative languages with siffe&s, such as C. Third,
our language is designed to have a minimum of extraneousysymiaking it much easier to learn and
read.

This paper’s primary contributions are the following:

¢ A pure functional programming language with a straight@amvsemantic model and syntax

e Automatic computational frequency inference for optimaitpioning of program execution to

four stages of the graphics pipeline

¢ Natural shader composability that follows naturally froine tsimple execution model and fre-

quency inference

Key Design Decisions

Functional Model

Renaissance is based on the syntax and semantics of mogeed, pure functional languages,
specifically the family consisting of Miranda, Haskell, @he Since we don't expect our audience to
be familiar with the syntax or semantics of these languatpesfollowing will introduce the look and

feel with an example.

pi = 3.1415927
square X = X * X

circumference r = pi * square r



The first line defines a namei to have an approximate value of pi. The second line defines a
function calledsquare that takes one parameter and returns its square. The thediéfines the cir-
cumference, given a radius, to be pi times the square of thesaquare r is the syntax for function
application, and it means “apply the function square to #ilee/r”. Notice that the example does not
make any types explicit. Types are inferred based on a defifsitexpression and any arguments. So,
above pi has typefloat. square’s type is -> t, meaning “a function that takes type t and returns
type t”, where t is the type of the arguments. SSmare 10 has typeint andsquare 10.0 has type
float. This type inference is discussed in detail later.

There are no loops or variable assignments in this languaggry object, once created, cannot be
changed. This is called referential transparency, whitdrsdo the fact that if the same function twice
is called twice with the same arguments, the same resulbwiteturned.

Modern GPUs have a stream programming model: there is arstoéalata elements (vertices
or fragments) and a function is applied across all of themis Timction, in stream programming
terminology, is called a kernel. Since all of the stream elet® are independent, the function can be
run in parallel without any sort of synchronization or dagpendency analysis. This is largely the
reason why graphics processors these days ardfis@et: performance increases linearly with the
number of processors available. Previous shading langua@ee semantic models similar to C; that
is, variables that can be modified and read from. Furthemttier statements are executed is critical.
Consider the C-like code in figure 2.1.

The value ofr at the end ofitain () is either 9 or 5, depending on whethfero () orbar () is called
first. In general, this restriction complicates the comgsléask of optimization and static analysis. A
functional language, on the other hand, is given a lot ofdoee to reorder evaluations, because all
dependencies are explicit and no evaluation has sidets. For specialized tasks, functional languages
have been shown to perform much mofiogently than equivalent C code.

As hardware programmability increases in capability aratisis get longer and larger, we believe
a functional language will scale in both performance andhtamability more than a language based

on the imperative model of C.
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int a = 1;

int foo() {
a += 2;
// Some code.
return 10;

}

int bar() {
a *= 3;
// Other code.
return 15;

}
void main() {
int sum = foo() + bar(Q);
// do something with a
}

Figure 2.1 C code example

Even ignoring the performance and “compiler-friendly”uss, functional languages are a better
mental model for the humans writing shaders as well. Theyeneaklicit that an operation on a stream
element has no siddfects beyond the output value. Other shading languages nplititty document

that modifications to global variables do nditezt the program’s operation on other stream elements.

Frequency and Type Inference

Renaissance is a statically typed language, astin,©ther shading systems, and most pure func-
tional languages. That is, the type of an expression is &gsdowith its name, not its value. However,
Renaissance infers the type of an expression from contextpsypes need be specified explicitly.

Consider:

fooab=a+barhb
bar b = b + 2

result = foo 10 4

Notice that no types are explicitly specified. However, wiresult is evaluatedfoo is called

with two integers and returns the sum of the first &aae of the second. The result of this addition is an
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integer as well, so the valuesult has typeint. Consider the definition of a function that normalizes

a vector:
normalize v = v / length v

The operation of the function is clear even though its arguraed return types are not specified.
This has a surprising siddéfect: thenormalize function actually represents several functions, each of
different type. Given that division by a scalar and the lengtletfan can operate on multiple types of
vectors, normalize will work with any vector. This is simila practice to G-+ template functions.

Alongside each expression’s type, we also maintain a caatiputl frequency, a concept intro-
duced by Stanford’s RTSL. There are four frequencies: emgper compile), uniform (per primitive
group), vertex (per vertex), and fragment (per fragment)iltBn shader inputs each have a specified
frequency. For examplggl_Vertex has the frequencyertex. gl_FragCoord has the frequency
fragment. If an operation on two expressions that hauv@edent frequencies is performed, the result-
ing expression usually has the higher of the two. One exmei theif construct: if the condition
has constant frequency, thé is evaluated at compile-time, and, if true, the resultiregérency is the
frequency of thel f-true expression. Otherwise, it is the frequency of ilfe false expression.

Outputs have a required frequency as well. GhePosition output has frequencyertex and
gl_FragColor output has frequencyragment. It is an error to defingl_Position to be an ex-
pression with frequency¥ragment. Outputs must have frequency less than or equal to theiritiefin

Now assume thajl_FragColor depends on the normalized, transformed normal:

gl_FragColor = dependsOn (

normalize (gl_NormalMatrix * gl_Normal))

gl_NormalMatrix has frequencyniformandgl_Normal has frequencyertex. Thus, the nor-
mal transformation can be done on the vertex processoioKslat first glance like theormalize call
can be moved up to the vertex processor too, but, since it anlinear operation and the fragment
interpolators linearly interpolate, the normalizationgnbe done on the fragment processor. Concep-
tually, all operations are done on the fragment processatified to earlier stages of the pipeline if

possible.
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Single Shader for Both Vertex and Pixel Pipelines

In contrast with the most popular real-time shading langsamgday, Cg, HLSL, and GLSL, we
decided to blur the distinction between vertex shaders eaghfent shaders. One concern raised by
NVIDIA in the design of Cg is that the ffierent processors supporiffédrent functionality, and by
making the programs explicitly separate, th&atiences are made clear[16]. However, recent trends
suggest that the vertex and fragment processors will groseclin functionality, rather than farther
apart. Microsoft's new graphics standard, the Windows GiapFoundation (WGF, aka DirectX 10)
is pushing for a unified processor architecture for both #réex and fragment parts of the pipeline [2].
ATI technology has also recently been issued a patent on tirtimdaded graphics core that hides the
distinction between vertex and fragment units [15, 1]. kil in mind, we feel the potential confusion
caused by executing “one” program on two potentiallffetent processors (in addition to the CPU) is
worth the benefit in improved shader clarity, maintain&pitand optimization.

To mitigate the potential confusion brought about by thigrapch, we may allow specification of
computational frequency explicitly, as RTSL does. If a loirequency is specified for a result than
the values it depends on (for example, if it is claimed thasalt has a frequency ekrtex but it de-
pends on the&ragment-frequencygl_FragCoord value), a compile-time error is raised. Conversely,
explicitly specifying a higher frequency than would be iméel would force computation to occur later

in the pipeline, which could be a performance improvemeisbime cases.

Shaders As Data Files

Following the example set by Cg and GLSL, it is critical thaaders can be treated as data files
so that they can travel along with the models whose surfdessdescribe. Requiring a compilation
step before being able to load or use a shader greatly iregdhe amount of time it takes to iterate
changes, especially for shader building tools and people avbn’t programmers. For this reason,
the approach taken by metaprogramming shading systemfe&sible for many uses of shaders, such
as in games and modeling software. The convenience of béilegt@ use a fully-featured general-
purpose language for generation of shaderdtiseb by the requirement of having a complete+Cor

Haskell compiler in order to use them at all. Further, thasbakfunctional programming languages,
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the lambda calculus, provides a high degree of abstractidnnatational convenience even with a
naive implementation [13]. Therefore, we can provide mainthe important features of other high-
level languages, such as higher-order functions and djzatian, with a minimum of &ort. Also,
Vertigo shows that an optimizing compiler from a functiotzadguage to GPU architectures is relatively
straightforward, especially compared to an optimizing @pier. In short, we believe a “small”
functional language with a simple and powerful semantic @hodn satisfy the needs of shaders just as

well as the metaprogramming systems, without the requinéimfea host environment.

System Overview

The Renaissance system is implemented-#+@nd split into two pieces: the language, including
its compiler, and the shader management API. For simplafitynplementation and to leverage the
extensive design work that went into the OpenGL Shading uagg, we have chosen GLSL as the
basis for a large portion of our language.

When the program loads a shader, it is parsed, validatedtygedchecked into an intermediate
program structure. The program can then set the value of amstant inputs. When the program is
bound, it is compiled into code that can run on the GPU, opgteahifor the constant values that have
been set. This part is what enablgBagent specialization and composition. The generated code i
cached with the constants used to create it so recompiletinat necessary when switching back and
forth between shader states.

Setting uniforms and attributes does not invoke reconipiatsince their values do noffact the
structure of the generated code.

One of the niceties of metaprogramming languages is thahtbgace between the host program
and the shader is very convenient, since it can use natizetgla¢s and structures. Contrast this with
the OpenGL Shading Language APIs which require queryingnaagiaging uniform indices, and use
function names with 'warts’ to distinguish between settiifjerent uniform types: glUniform1f and
glUniform2i etc. We can get close to the convenience of a pretgamming language by providing

custom G-+ types that hide the internal data transfers.

ren: :Bool enableBones(program, "enableBones");
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enableBones = true;

program->bind(); // Compiles if necessary.

enableBones = false;

program->bind(); // Compiles if necessary.

enableBones = true;

program->bind(); // Does not compile, already done.

The next two sections define the language and the compilepie nretail.

Language Description

The syntax and semantics of Renaissance are very similaetianguages Miranda, Haskell, and
Clean.
A program consists of two components: inputs and definitidach is separated by a newline.

(Renaissance is whitespace-sensitive.)

Inputs

There are three types of inputs, one for each of the first ttwegputational frequencies: constants,
uniforms, and vertex attributes. Constant values are takenaccount at compile time, uniforms at
primitive group time, and attributes per vertex. Sincertlygde cannot be inferred, it must be made

explicit:

constant bool enablePerPixelLighting
uniform mat3 colorMatrix

attribute float temperature
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Definitions

A definition either specifies a value or a function, with thexgml form: name (arguments}*

expression

value = 2 + 2

function argl arg2 = argl / arg2

value is a value of type int and function is a function of type* t -> u (takes two values of
potentially diferent types and returns the type of dividing the first by ttemsd). function’s return
type is not evaluated until it is called with arguments. Iisthense function actually refers to a
template of possible functions which are instantiated wisdied.

Expressions consist of infix operators and function appitioa. Precedence of operations is the
same as in GLSL. Operators are discussed more fully in adatgion.

Evaluation of functions is done lazily, as in Miranda, Hdkkend Clean. This prevents redundant

code generation:

constant bool doExpensive
choose expensive cheap =
if doExpensive then expensive else cheap

gl_FragColor = choose ExpensiveCalculation CheapCalculation

The arguments tohoose are only evaluated if necessary; that igldExpensive is true at compile
time, then onlyExpensiveCalculation will be performed. Otherwise, onlgheapCalculation

will be performed. Lazy evaluation is necessary for optisgecialized code generation.

Types

Following the conventions set by GLSL, we provide the folilogvtypes:bool, int, float, and
vectors of 2 to 4 elements of eachie€? is a vector of two floatsyec3b is a vector of three bools,
vec4i is a vector of four integers, etc.) There are also three sqdlaat matrix typesmat2, mat3,

andmat4. Texture samplers have typampler1D, sampler2D, etc. just as in GLSL.
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Arrays have type[t] wheret is the type of its elements. Since shading hardware doesatot y
support variable-length arrays, the length of the arraytrbasspecified atonstant frequency. In
order to access the i-th element of an array, an array acsdesated as a function and called with
parametet.

In Renaissance, there are no implicit type conversi@ns: 2.0 is a type error, requiring a con-

structor conversionfloat 2 + 2.0

Built-In Functions, Operators, and State

As with types, we provide access to all GLSL built-in funase with the same names, types, and
overloads. Texture access is done as in GLSL, with the extetitat sampler types may be called as
functions with the lookup coordinates as the parameter.

All of GLSL's built-in infix operators are available in Reisaance, with the same precedence. Func-
tion calls have the highest precedence, but parenthesewaitable and operate as expected. A new
++ operator is defined as vector concatenation, replacing Glv8kttor constructors. Given two floats,
concatenating them with+ returns a 2-element vector. For exampleec3 1.2 3.4 5.6) ++ 7.8
evaluates twec4 (1.2 3.4 5.6 7.8)

All GLSL state is exposed in Renaissance as expected.

Overloading and Swizzling

Renaissance supports what is known as ad-hoc polymorpbirsmuerloading, based on the number
and type of arguments. For example, the expressiaed 1.0 andvec4 1.0 1.0 1.0 1.0 are
equally valid and have the same result, since the first is arl@aded constructor that fills the vector
with its one argument. There is a built-irength function which takes any vector of size 1 to 4 and
returns its length. Renaissance defines a special dot opératsimilar to the language Nice) that calls
the right hand side with the left hand side as its argumenis ifieanslength vec andvec.length
are equivalent. This has the nice property that vector ding{vec.xyz) can be defined entirely

within the standard library, although, for performancestess, it is special-cased.



17

Composability

As graphics teams begin to replace the entire fixed functipelipe with their own shading al-
gorithms, the restriction that shaders must replace theeguipeline becomes an increasing problem.
Moreover, it is nontrivial to write two independent piecddhe shading algorithms and combine them
into one shader at runtime, even if they are independentfinitien. Some have solved this problem
with elaborate preprocessors that combine the pieces mdsbader that does not do any redundant
computation. Valve's Half-Life 2, for example, builds oviE500 shaders as part of their build process
by combining pieces of them with a preprocessor.

As a consequence of the functional programming model arguémrcy inference, Renaissance

naturally supports composition, as demonstrated by thewalg example code:

constant bool uselLightingModell

lightModell # calculations for light model 1

lightModel2

# calculations for light model 2
gl_FragColor = if uselLightingModell then lightModell

else lightModel2
Since the variableseLightingModell has constant frequency, it is evaluated at shader compila-
tion time. Thus, the shader is specialized based on its vaiitie no extra computation per fragment.
Abstraction Facilities

Traditionally a vertex program that applies skeletal ariomabone transformations to each vertex

looks something like this:

uniform [mat4] bones
attribute vec4 bonelIndices

attribute vec4 weights

vO

weights.x * ((bones boneIndices.x) * gl_Vertex)

vl = weights.y * ((bones boneIndices.y) * gl_Vertex)
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v2

weights.z * ((bones boneIndices.z) * gl_Vertex)
v3 = weights.w * ((bones boneIndices.w) * gl_Vertex)
vertex = v0 + vl + v2 + v3

gl_Position = gl_ModelViewProjectionMatrix * vertex

This program has much duplicated logic and is hard-codeth@®onumber of bones applied to each
vertex. One improvement would be to use a for loop or itemationstruct to iterate over the bone
references. This would reduce the duplicated logic, butgitars for these languages do not claim to
unroll loops and may even cause the shader to be virtualizedtbe CPU if loops aren’t supported by

the underlying hardware. Given frequency inference antédrigrder-functions, however:

constant bool enableBones

uniform [mat4] bones
attribute vec4 bonelIndices

attribute vec4 weights

skinnedVertex =
sum [(weights i) * (bones (boneIndices i)) * gl_Vertex)
for i in (range 0 3)]
vertex = if enableBones then skinnedVertex else gl_Vertex

gl_Position = gl_ModelViewProjectionMatrix * vertex

The syntax[expr for var in list] is called a list comprehension. A new list is created by
evaluatingexpr on every item inlist. In this case, the new list contains weighted vertices, whic
must be summed to get the result. The sum function takes anlisteturns the result of adding all its
elements. Since the length of the list has constant frequéns automatically unrolled.

It may seem strange that the vectaights is being called as a function, with an index as a
parameter. But, since the index hasmstant frequency,weights 0 is compiled intoweights.x,

weights 1is compiled intoveights.y, etc...
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This version of the shader provides a simple switch to enaftedisable bone application at com-

pile time.

Runtime Description

Compiler Backend

As mentioned above, we are building Renaissance upon Glt$4 al strong foundation for our
functional language. Also, several functional languagesgle to C as it makes a venyfective
portable assembly language. Nothing in the language iselfents other backends from being added
in the future, however.

Shaders have special output definitions that are the oneallgcatesponsible for generating code.
If gl_Position is defined, for example, it must have typec4 and frequency ofertex or less. Its
evaluation becomes part of the vertex program. If it and thléovertex-frequency outputs are not
defined, a vertex program is not generated at all and the fixectibn pipeline is used. If any other
vertex-frequency is definedgl_Position must also be defined. (In GLSL, vertex programs must
output at least a positiongl_FragColor has the same restriction fdiragment-frequency outputs.
These output variables can also be assigned the specialwadefined, which is equivalent to not

giving a definition at all. This is used in the following sitigan:

gl_FragColor = if enablePerPixelShading then getColor

else undefined

The reason the special valuadefined is necessary can be demonstrated by a shader that can
switch between per-vertex and per-fragment lighting. Whertex lighting is enabled, we may not
need a fragment program at all: the fixed function pipeling/ @ just fine. In that case, we want a
way to define whag1l_FragColor is, while providing a switch that specifies whether it shayddierate
an output or not.

Fig. 2.2 shows the standard OpenGL brick shader translatectlgt into Renaissance.
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Future Work

While Renaissance satisfies our expectations, there amdycéreas that we feel we could improve
it. First, composition and specialization of shaders insystem requires that everything is written and
compiled in one file. A “linking” or “module” system would allv users to write independent concepts
by themselves and then combine them as needed. Similarlyyoutd like to extend the concept of
functional graphics up to the level of multi-pas$eets and state specifications. As Vertigo [7] shows
so eloquently, functional programming is a perfect fit fomyaoncepts in computer graphics.

Our research was focused on implementing high-level opttigns such as specialization without
redundant code. We would like to apply Vertigo’s expressm@nriting system so that we can gener-
ate dficient code at the instruction level as well. Along the samedj additional backends for the
assembly language shading languages are an obvious impeate

Finally, since a functional language provides a clear, ungoous specification of the dependen-
cies in the pipeline, implementing shader debugging artdalization on top of Renaissance is a nice

opportunity.

Conclusion

As programmable graphics hardware becomes more prevaldnnstruction and memory limita-
tions are lifted and removed, a next generation shadingukge will need to reduce the complexities
associated with transferring data and calculations froenhihst application all the way down to the
pixels on the screen.

This paper describes Renaissance, a shading languagedermprogrammable GPUs that, through
the benefits of functional programming, enablfgint and clear algorithm specifications across mul-
tiple stages of the graphics pipeline. Through a simple séimemodel and frequency inference, natural
composability of shading “concepts” is possible, whichstirg languages makefficult at best. Ex-
tending this simple concept, we can imagine a programmadiadisg system with configurable state

that can be flipped on andfpjust like the interface to the fixed function pipeline.
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# Uniforms.

uniform vec3 LightPosition

uniform vec3 BrickColor

uniform vec3 MortarColor

uniform vec2 BrickSize

uniform vec2 BrickPct

# Constants.

SpecularContribution = 0.3

DiffuseContribution = 1.0 - SpecularContribution
# Transform.

gl_Position = ftransform

ecPosition = (gl_ModelViewMatrix * gl_Vertex).xyz
tnorm = normalize (gl_NormalMatrix * gl_Normal)
# Lighting.

lightVec = normalize (LightPosition - ecPosition)
reflectVec = reflect (-lightVec) tnorm
viewVec = normalize (-ecPosition)

diffuse = max (dot lightVec viewVec) 0.0
spec = if (diffuse > 0.0) then s else 0.0
where s = pow (max (dot reflectVec viewVec) 0.0) 16.0
LightIntensity = DiffuseContribution * diffuse +
SpecularContribution * specular
# Brick.
position = gl_Vertex.xy / BrickSize + (vec2 xoffset 0.0)
where xoffset = if fract (position.y * 0.5) > 0.5 then
0.5 else 0.0
useBrick = step (fract position) BrickPct
color = mix MortarColor BrickColor amount
where amount = useBrick.x * useBrick.y * LightIntensity
# gl_FragColor should have
type vec4gl_FragColor = color ++ 1.0

Figure 2.2 Brick shader
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3 THE IMPLEMENTATION OF A FUNCTIONAL SHADING LANGUAGE

A paper to be submitted tBhe International Conference on Functional Programming

Chad Austin

Abstract

Renaissance is a functional programming language for dpwe programs that run directly on
real-time programmable graphics hardware. It providesvelrepproach to solving the problem of ef-
ficient shader specialization by using frequency analysisaatomatic lifting. We show the feasibility

of such a design by providing algorithms and techniqueseridhguage’s implementation.

Introduction

The advent of programmable hardware is perhaps the mosttiampaeal-time graphics hardware
innovation in the last five years. As programmable shadiptpoes operations traditionally done with
the fixed function pipeline and selected extensions, thedémechanisms to elegantly anflieiently
combine shading code, without resorting to preprocesbaitsrtin on the shader text, is a large barrier
to wide adoption of shaders.

We introduce a functional programming language, in theestfHaskell, Miranda, and Clean, for
implementing shading algorithms on modern, programmabé#d;time graphics hardware. We discuss
previous systems for interfacing with programmable hardveand show why they don't facilitate or-
thogonality. We discuss the implementation of Renaissandetail and provide an example dfieient

specialization that isn’t straightforward in existing ®rss.
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Related Work

This research draws mainly upon three other fields: prevétasgling languages, functional pro-

gramming, and staged computation.

Shading Languages
Graphics Pipeline as a Shading Language

Before graphics hardware allowed user-defined programeptace the vertex and fragment pro-
cessing portions of the pipeline, some systems used msstifgxture blending techniques available
on existing hardware to perform somewhat arbitrary shadadgulations. The Quake 3 engine, for
example, provided a simple shader scripting language traldhe number of passes, texture stages,
and rendering states. Peercy, Olano et al. discovered #tahdard OpenGL 1.2 implementation, with
a handful of key extensions, could be treated as a generpbpel SIMD computer in their OpenGL
Shader work. [20] OpenGL Shader can support arbitrary sigadising multiple rendering passes.
This approach is not viable in the long term, as multipassriélyns depend on a very high memory

speed, and arithmetic unit clock speeds are increasingr fdstn memory.

RTSL

Stanford’s real time programmable shading system, RTS], [@toduced the concept of compu-
tational frequency. They defined four frequencies at whmmpgutation can be performed: constant,
primitive group, vertex, and fragment. Constant compatais done at shader compile time and not
during the processing of geometry. Primitive group comipartais done per batch of geometry, while
vertex and fragment computations are done per vertex anfragment, respectively. RTSL has a
retargetable backend that can map vertex computationhtere¢tie CPU or early programmable vertex
hardware. Fragment computation is mapped to multi-pas$©iGpgas in OpenGL Shader above, or
early fragment processing hardware like NVIDIAs registembiners. Their shading language did
not logically separate the vertex and fragment stages asotingiler was responsible for splitting the

work up among the various computational stages. Keywolds/atl explicit specification of where
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computation is to be done; for example, to easily compardigtting algorithms, one per vertex and

the other per fragment.

Assembly Languages (ARBfp, ARBvp, DirectX shader models)

As fully programmable graphics hardware appeared, thegsghan assembly-language-like mech-
anism for programming the pipeline. The assembly languagéets a vector-based register machine
architecture. Although the instruction sets were limitedlrat, they were leaps and bounds more gen-
eral than the previous programmability options. Over timeythave grown more advanced features
such as dynamic branching. They are mofficient than the multi-pass approaches above, because
they require much less memory bandwidth; instead, theyrakepe increasing ALU clock speeds. One
obvious disadvantage of assembly languages is that thegliffilt for people to write and under-
stand, as well as maintain, especially when programs gggraf heir principal advantage is that they
expose the capabilities of the hardware in a direct way aadepmost of the cost of optimization on

the application developers.

Cg/HLSL

Naturally, the next step beyond an assembly language istaléigl language that compiles to it.
Cg [16] and HLSL were created by NVIDIA and Microsoft, restipegly, as C-like, high-level shading
languages. HLSL compiles to the Microsoft-defined Direcettex and pixel shader models, which
are loaded into the card at runtime. Cg, on the other handpibesnto a variety of back ends and is
graphics API neutral. The most recent NVIDIA cards have suipjor Cg in the driver itself, requiring
no distinct compilation step. When referring to the languaged by both Cg and HLSL, | will call
it simply Cg, even though they have diverged since. For the shcompatibility with other shading
systems, and transparent access to the underlying hard@guaoes very little work for the user. She
is required to specify how data is transferred into the stsaaied which attribute channels map to what.
By design, Cg also does not virtualize any resources, if mfeds not available. One of Cg’s primary

goals is to be as close to the hardware as possible while aivdimg a higher level of abstraction.
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GLSL

While Cg and HLSL were being developed, 3DLabs and the Opeffshitecture Review Board
were designing a shading language for the future of Open@®e.QpenGL Shading Language (GLSL
[22]) had diferent goals than Cg and HLSL. It was intended to become painedDpenGL standard,
replacing the assembly languages. OpenGL implementerstraus the shader compiler in the driver
itself, as opposed to an external process. This increages domplexity, but means that applications
that use GLSL benefit from driver upgrades and compiler ivgmeents for free. It is also a forward
thinking language design in that it requires all implement® support things like conditionals and
loops even if they can’'t do it in hardware. It requires vilization of resources not visible to the

shader writer, such as temporary registers and instructant.

Sh

Sh [17]isn’'t exactly a language, per se. It is a metaprograngreystem on top of €+ designed
for building shaders. Sh is implemented through a set ofoonst++ objects that build an internal
program representation when operations are applied to.tAdris program is compiled to an under-
lying shader that is run directly on the graphics card. Theaathge of a metaprogramming system
such as this is that it has very tight integration with thettasguage. If the shader references a global
variable, and assignments are made to that global variaitdgde the definition of the shader, the data
is automatically passed in as a uniform. Also, it is naturalge the host language’s features in order to
specialize shaders. For example, if the shader containsrgtvexpression, two flierent shaders may
be generated, based on the outcome of the condition. Sh'empridisadvantage is that it requires a
full C++ compiler to use a shader. Thus, shaders can’t easily bechaksey with 3D models, limiting
their usefulness to people who aren’t programmers. Thdi Haére are some uses for shaders where
a metaprogramming approach is ideal; such as implementafioustom graphics algorithms tightly

bound to the application.
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Vertigo

Vertigo [7] is a metaprogramming system like Sh, but builtop of Haskell instead of €+. The
interesting aspects of Vertigo are that it is a functionablzage and uses expression rewriting for op-
timization. Expression rewriting allows it to do an optinsgarch of expression space to reduce the
amount of computation necessary in a particular evaluatrompelling example is that of vector
normalization. Vector normalization is a common operaiiomgraphics programs. When writing a
procedure, there is a choice between accepting a hormalizetdr or a potentially non-normalized
vector and then normalizing it explicitly. Since normatiea is expensive, normalizing a vector twice
should be avoided. However, in a functional language it issfiile to take advantage of referen-
tial transparency and expression rewriting to reduce tlpgessionnormalize (normalize v) to
normalize v. Once this optimization is available, there is no reasontmeiormalize a vector, if it
needs to be. Redundant normalize calls are optimized awastig¥' shows how this is done in an

elegant and automatic way.

Staged Computation

The concepts of computational frequency and shader sgtiah have generalized analogs in
recent work in staged computation and partial evaluati28] If’s not obvious how staged computation
research —which is intended fdifieient specialization of programs on one architecture — eaapiplied
to custom programmable hardware, but there are certamlyesities, not the least of which is that they

tend to be based on pure functional languages.

Functional Programming

A lot of Renaissance’s design depends on research in modectidnal programming languages,
starting primarily with Miranda. [24] The algorithms in timplementation owe much to the techniques

specified in The Implementation of Functional Programmiagduages. [13]
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Motivation and Contributions

Existing shading systems have generally been designedtidpra reasonably close representa-
tion of the underlying hardware. Since the underlying hanewequires full replacement of the vertex
and fragment stages of the pipeline, the orthogonality effitked function pipeline is lost. If any cus-
tomizable shading is desired, everything else must be imgfeed as well. Several people have built
preprocessors and ad hoc shader composition systems v@t&l¢his problem. Through frequency
analysis, Renaissance allowfi@ent shader specialization without a higher-level prepssor.

Since existing languages don't hide the distinction betwie vertex and fragment processors,
the implementation of a particular shading algorithm reegithe developer to explicitly mark which
calculations are performed on which stage of the pipeling: s9stem allows this to be inferred from
the frequencies of the input in the calculations being perém. This is discussed in detail later.

The metaprogramming systems, Sh and Vertigo, have thevdistaje that they depend on a
host programming language, and thus cannot reasonablygderiranted in graphics drivers or scene
graphs, for example. One of Renaissance’s goals is simyphiimplementation, so that it can be
implemented in or used from many languages and systemsndaar computational theory on the
lambda calculus facilitates this. Compilation and evaturats also discussed later.

The programmable graphics hardware found in modern gra@tceleration cards, is stateless.
That is, there is a set of inputs, a set of temporary regigteshich to perform calculation, and a set of
outputs for passing data on to the next stage. Elementsisansthat are being processed have no way
to communicate with each other. We believe a functional fnmgning model matches this hardware
better then C-like languages. For optimization purposesgars written in C-like languages are often
transformed into single-static-assignment form (simtitapure functional programs) anyway. If that's
the case, why not just have a functional programming languaghe first place? More importantly,
a functional language has a cognitive model such that nesatan be modified, matching the human
mental model of the underlying hardware better.

Finally, if Renaissance aims to provide the backbone forlémenting an orthogonal rendering
pipeline with shaders to replace the fixed function pipelgeection of renderer state (and thus, speci-

fication of shader input values) must be as conveniegliBsable (GL_LIGHTING). The Renaissance
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runtime system make specification of these valdtwtess.

In short, our primary contributions are as follows:

The implementation of a pure functional programming lamguir programming graphics hard-

ware.

Efficient shader specialization through partial specialirati

Automated computational frequency inference for optinetiioning of program execution to

four stages of the graphics pipeline.

Simple implementation allowing for a wide variety of uses.

Shading Pipeline

An extremely simplified overview of the graphics pipelineadee split into four stages, roughly.

Application

The application configures the rendering state (currerdeshéighting parameters, textures, mate-
rials, etc.) and pushes groups of triangles to the vertezgssor.

Vertex processor

The vertex processor transforms, clips, performs vertéoutstions, and begins rasterization. It
runs once per vertex.

Interpolators

Any given triangle can generate an arbitrary number of fragisy depending on its size on the
screen. The attributes passed from the vertex processbetiragment processor must be linearly
interpolated across the triangle (perspectively corrécbarse). The interpolators perform this opera-

tion.
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Fragment processor

The fragment processor performs any final shading caloulsitbn the pixel before it is written into
the frame bifer and displayed on the screen. These include per pixeidgbalculations, depth Ifier

tests, reading from textures, and alpha blending.

Language Overview

Introduction

In syntax and semantics, Renaissance looks and feels vailarsto languages in the Haskell,
Miranda, and Clean family. For those familiar with funciddanguages, Renaissance is a strongly
typed, pure, non-strict language. For the other, it's pbbbhaest to start with examples. Names can be

given definitions:
gross = 12 * 12
Functions over arguments are defined as such:
square X = X * X
Functions can be applied to arguments:
sumOfSquares X y z = square X + square y + square z

Certain definitions have special meaning — they are the taipfua particular stage of the GPU.
For example, the special outpygl_Position refers to the vertex position generated by the vertex

processorgl_FragColor is the color of the pixel that gets placed in the framféu

Frequency

Because graphics hardware is split into stages, we borrevwdhcept of “computational frequency

from RTSL. We support four frequenciesonstant, uniform, vertex, andfragment.

e Values ofconstant frequency are known at the time the shader is compiled irgtyuntions

that actually run on the hardware.
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e Values ofuniform frequency may be specified by the application per every haftebrtices.

e Values ofvertex frequency are given to the shader per vertex. These areallgnettributes

such as the vertex normal, texture coordinates, and color.

e Values offragment frequency are given to the shader per fragment.

At first glance, the result of an operation applied to two galshould have frequency equivalent
to the highest frequency of the values. Since the literastaonis in2 + 2 haveconstant frequency,
they can be evaluated at compile time, to produce the liteahle 4. (This is known as constant
folding in the traditional compiler literature. It also cha thought of as partial evaluation in the staged
computation literature.) The generalized concept of fesgy allows us to do the same thing for the
other stages of execution. Let’'s say that a fragment stagmipunamelygl_FragColor, depends on

the normal given to the vertex stage transformed into eyedouaies:

gl_FragColor = generateColor (normalize (gl_NormalMatrix * gl_Normal))

gl_NormalMatrix hasuniformfrequency (it does not change per primitive group) ghdNormal
hasvertex frequency. Given our algorithm above, normalizing the ¢farmed normal should have
vertex frequency. But remember that there are interpadietween the vertex stage and the fragment
stage. A vertex normal can't be referenced directly by thgrftent stage — it can only reference the
output of the interpolator at that particular fragment. il®specifically that it makes noftierence if
gl_NormalMatrix * gl_Normal is calculated on the vertex or fragment stage of the pipdletause
the normal matrix does not change between primitives in agrblowever, normalizing a vector on the
vertex processor, and then interpolating that, fiedent from interpolating the vector and normalizing
it on the fragment processor. Now we see that we can onlydifiutation from the fragment shader
to the vertex shader (that is, across the interpolatorglibiperation is linear. Multiplication of a uni-
form matrix by a vector, addition of two vectors, multiplian or division by a constant, and several
other operations are linear and can be lifted to the verteggssor. The naive algorithm above works
properly for lifting anything from the vertex shader to th@\C, such as multiplication of uniforms,

however.



32

Types

Since this language is based on GLSL, all primitive typesareowed directly. There are integers,
floating-point numbers, and booleans, as well as 2-, 3-, amectbrs of each. Three square matrix
types are provided: 2x2, 3x3, and 4x4. There are also six lsartypes which cannot be manipulated
but are used to read from texture units.

Renaissance has two compound types: tuples and functionalua of type(int, float) has
two elements, the first of which has typet, and the seconflloat. A function that accepts an integer
and returns a float has tygeént -> float). A function that accepts two integers and returns their

sum has typ€ (int, int) -> int).

Ad Hoc Overloading

Types in the language are inferred entirely from context,specified explicitly. Rather than us-
ing the Hindley-Milner type inference or class-based payphism [25] common in other functional
languages, Renaissance uses an ad hoc overloading systédar 88 C++ [3]. A particular source
level function definition actually refers to a template afidtions, depending on the types of the argu-
ments. For example, given the definition of the functigimare above,(square ), (square 0.0),
(square (vec2 0.0 0.0)) are all valid, having typegint -> int), (float -> float), and
(vec2 -> vec2), respectively.

The reasons we chose this approach over the standard Hikiillegr approach are twofold. First,
the most common language known in our target audienceris. Thus, it makes sense to use-€s
template and overloading model. Secondly, and most impityfeGLSL uses ad hoc overloading in
the definition of its standard functions and operators. Tiragry disadvantage of choosing an ad hoc
approach over the Hindley-Milner inference is that the §ypEarguments cannot be inferred directly
from their usage in a function. So, to pass a function intotlarofunction, it has to be explicitly
instantiated with its arguments, as ir-€. We believe passing functions into other functions is a rare

enough operation for shader developers that this tréitis-acceptable.
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Expressions

In an expression, there are four primary types of syntax efésn unary and binary operators,

function application, and conditional branches.

negativeNormal = -normal # Unary operator.
eight =2 + 2 * 3 # Binary operators.
myLength v = v / sqrt (dot v v) # Function application.

lightingModel = if dot vl v2 < 0.0 then modell else model2 # Branch.

Function application has the highest precedence. The geace of the other operators matches

the OpenGL shading language specification.

Inputs and Outputs

Shaders replace a section of the programmable graphidigip&hey have a set of inputs that they
process and pass on to the next stage through a set of preblefitputs. If an output is not defined,
the next stage of the pipeline gets a default value.

The two required outputs argl_Position andgl_FragColor. gl_Position represents the
transformed vertex after processing by the vertex pipetiteFragColor is the color of the fragment
written to the framebflier after fragment processing.

OpenGL defines a standard set of inpufk. Vertex, gl_Normal, g1_Color, texture coordinates,
lighting parameters, transformation matrices, etc. Addél inputs can be defined by the user through

three keywords: constant, uniform, and attribute.

e Constant inputs haweonstant frequency and cause a recompilation of the generated coele wh
they are changed. They are typically used to reconfigure hiadisg pipeline while retaining

efficient generated code.

e Uniform inputs do not cause shader recompilation but arel iseconfigure parameters that
remain constant over a batch of primitives. Lighting pargareeand transformation matrices are

typically uniforms. Uniform inputs haveniform frequency.
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e Attribute inputs become part of the vertex stream and ard tsetore any data that changes
often or is associated with a vertex. Common examples iectadgent and binormal vectors,

temperature, weight, density, additional colors, etcridte inputs havattribute frequency.

Compiler Implementation

Parsing

Upon loading, a Renaissance shader is lexed and parsecimtoséract syntax tree (AST), using
standard parsing techniques. After parsing, the shadgramois stored in a direct representation of
the syntax. Th&rogram object contains a list of constants, uniforms, attributeg] definitions. A
Definition has a name and an expression tree, in which nodes correspetetrients of the source.

There are only two types of syntax nodes: values and funegmtications. The program:

uniform mat4 TransformMatrix

gl_Position = TransformMatrix * gl_Vertex

Builds a program structure with one uniform and one definjtibefininggl_Position as in Fig-

ure 3.1.

Building the Lambda Graph

The compiler, given a program object, knows about the lwittutput names, and thus “instan-
tiates” the definitions. This process of instantiation @i syntax nodes into nodes in the lambda
calculus, named concrete nodes in this implementation.lé\gyntax nodes only have strings, con-
crete nodes actually represent objects in the languagethasdhey have type and frequency. There
are six types of concrete nodes: function application,rab8bns, arguments of abstractions, branches,
built-in functions (with strict call semantics), and vadué-igure 3.2 contains a graphical representation

of the following program after instantiation into the lanabchlculus.

fooab=a+b
bar = 10

output = foo bar 36
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Program

(none)

| Constants =

| Uniforms

| Attributes / mat4 TransformMatrix
/'

gl Position

‘ Definitions }/ /

*

/\

TransformMatrix gl Vertex

Figure 3.1 Example program structure

When instantiating a function application, the types ofalguments are evaluated, and the correct
function is chosen based on those types. No explicit typecameis performed. If no function accepts
the argument types, an error is raised. User defined furschame no type constraints, so the function

is chosen entirely on the number of arguments.

Lambda Reduction

Once the program is converted into the lambda calculuseitagiated using normal form reduction,
explained in detail in the lambda calculus and functionalgpamming literature. In short, when the
top of the DAG is the application of an abstraction, the argnis are substituted into the abstraction’s
subtree. [13] Figure 3.3 shows the valueoatput after one evaluation step.

As evaluation is done as part of compilation, a naive apprascsuitable. As abstractions are
evaluated, another graph is built as the result of evalnafldis new graph represents the set of com-
putations that must be done to calculate the output, andiicenbnly built-in operators and function

calls.
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| Abstraction @ Argument: a @ Argument: b

Figure 3.2 Example concrete node graph

The nodes in this graph are call€éddeNodes. There are only three types of code nodes: branches,
native function call, and references to names or constants. Figure 3.4 givesaampéeCodeNode

structure.
The generated, rooted, DAGs are inserted into a structliexidhe shade graph, which represents

the shader pipeline as a whole. It is not yet suitable for emion into GLSL though. Some further

processing is necessary.

1Operators are considered functions that evaluate to aasstitax in the generated code.

| Builtin: + | | Value: 10 | | Value: 36 |

Figure 3.3 output after application of foo



37

CoolestColor | | HottestColor |

\ - \ \ TempRange \

P

| VertexTemp | | CoolestTemp |

Figure 3.4 Example CodeNode DAG

Constant Evaluation

First, expressions with constant frequency should be eteduand inserted back into the shade
graph tree. This step subsumes constant folding in traditicompilers. It also facilitatedfecient spe-
cialization: branch code nodes where the condition has staohfrequency can be directly evaluated
and replaced with the true part or false part depending ouahe of the condition. If nothing else de-
pends on the computation that was removed from the gragnéver calculated in the generated code.
Another subtlety here is that the true part and false parheag diferent frequencies. This means that
the computation that depends on a result of the branch magy daliferent frequency, depending on
the value of the condition. Figure 3.5 is an example of a @nidioolean that enables texturing in the

shader.

GLSL Shader Generation

At this point the shade graph is converted into a data strei¢hat is conducive to direct conversion
into GLSL code. The structure has a list of constants, um&mttributes, and varying. It also contains
a statement tree to represent things such as assignmeatdketad compound statements, and if state-
ments. The statement nodes may reference subgraphs ireflatin DAG. For example, assignment

statements must reference the value they assign and britements must reference their condition.
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# Basic gouraud shading modulated with a texture if enabled

# Shader inputs

constant bool texturing # enabled?
uniform mat4 colormatrix

uniform sampler2D texture

# Output vertex position
gl_Position = ftransform

# Output fragment color

transformedColor = colormatrix * gl_Color

white = vec4 1.0 1.0 1.0 1.0

texel = if texturing then (tex2d texture gl_TexCoord) else white
gl_FragColor = texel * transformedColor

Figure 3.5 Example compile-time switch

It would be possible to convert this structure directly i@bSL that can be executed on the GPU, but

it's certainly not as fficient as it could be, yet.

Lifting

Next, computational lifting is performed. In most cases, ¢farlier a computation is performed in
the graphics pipeline, the mordieient the pipeline as a whole is. Shaders are compiled mwsh le
often than they are drawn, so constant inputs result in thst efidicient code, especially if they are
used to select code paths in the shadeach triangle (three vertices) can produce an arbitrarybaum
of fragments, so computation should be performed on thexgntocessor, instead of the fragment
processaor, if possible. As described above, not all contipatacan be lifted to the vertex processor:
only those that have vertex frequency and are linear and ¢dhnsbe lifted across the interpolator
units. The algorithm for lifting is pretty simple: while tlimgment portions of the shader have liftable
computations, replace them with a reference to a varying,dafine the varying in the vertex shader.

The lifting stage is done before optimization becausenlifimay generate common subexpressions in

the vertex program which then can be coalesced.

2Branching at runtime may not be supported in hardware asalljot generating unnecessary branches is of critical
importance.
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After constant evaluation converts the shade graph intonine@num number of calculations that
must be executed in the shader, computations in the fragst&ge that can be lifted across the inter-
polators (see above) to the vertex stage are converted I8l @arying outputs in the vertex stage,

and referenced by name in the fragment stage. The algorglas follows:

find liftable computation in fragment shader:
in vertex shader:
add new varying to vertex
add new assignment statement setting that varying output to the expression
in fragment shader:
add new varying (of same, but arbitrary, name)
replace reference to computation with reference to varying name

repeat while there are more

A computation is liftable if it has certain linearity propiess. Unary functions are lineardf * £(x)
=f(c * x) andf(a) + £(b) = f(a + b). Binary functions are linear  * f(x, y) =f(c * x,
c * y)andf(a, b) + f(c, d) = f(a + ¢,b + d). Multiplication by itself is not always linear,
but it can be, depending on the frequencies of the resultseXxample, multiplication of two scalars
with vertex frequency is not liftable, but multiplicatiorf a uniform scalar by an attribute scalar is

liftable, as the uniform is not interpolated.

Optimization

A side dfect of the lifting process is that a liftable computationttisaeferenced on both the vertex
and fragment stages is now duplicated on the vertex side .n@onsubexpression elimination removes

this redundancy. This is the point in the process where aptmizations could be performed too.

Code Generation

Finally, the shader data structures are converted direttthystrings which then can be uploaded to

the graphics card. This final phase is the most straightfatwa
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Runtime Implementation

The compiler is only one portion of the Renaissance systdimeifaan important one). A shading
system should provide a mechanism for 1) passing data iatsytstem and 2) interfacing the compiled
shaders with the underlying graphics API. This section éékcribe that part of Renaissance. We will
describe interfacing compiled shaders with the graphickfigd?, because it influences decisions in the

data input system.

Compilation

A a Renaissance shader can generate many GLSL shadersditigpen the values of constant
inputs. Consider a scene of objects, all rendered wifeidint shaders and shading parameters. Re-
compilation of the Renaissance shader every time an olgatraivn with diferent parameters is un-
desirable. Clearly, the compiled shader objects shouldabkex, along with the values of the constant
inputs used to generate those objects.

In more detail, the process works like this:

¢ When an OpenGL program loads a shader, memory is allocat¢ldefvalues of all the constant

inputs.

e Before an object is drawn, the values of constants are setha@mshader is bound as the current

shader on the graphics device.

¢ In the shader’s bind() call, if this set of constants hasaalyegenerated a GLSL shader, that one

is used. Otherwise, the shader is compiled with the new aatsst
The code looks something like this:

ren: :Shader shader("shader.rs"); // Loads the shader.

ren: :Bool useVertexLighting(shader, "useVertexLighting"); // Defaults to false.

shader.bind(); // Compiles for the first time.

drawObject();
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useVertexLighting = true;
shader.bind(); // Compiles again, with vertex lighting.

drawAnotherObject();

Data Input

There are three types of input that must be specified in a Beanaie shader: constants, uniforms,
and attributes. Constants were described above. Thegsettioniforms works in much the same
way. If a uniform changes between objects, however, theeshdaks not need to be recompiled. The
uniform’s new value must be uploaded to the graphics cardrbdahe object is drawn, though. The
shader object also maintains a registry of current unifoatnes so that it knows which values have
changed, and thus, which to upload to the card.

Constants and uniforms are largely abstracted away. TheafisRenaissance never has to use
graphics API calls directly to set or query them. More impaotly, the Renaissance input types are
much more convenient to use than the graphics API callsibiites are dferent story, however. Since
attributes are more tightly bound to the vertex specificaticechanism of OpenGL, Renaissance can
only provide a mechanism to get the GLSL attribute 1D, whibk program can then use directly
when specifying attribute values or arrays. Using the sgopeoach for attributes as for constants and

uniforms would be vastly irféicient.

Future Work

As our research has merely focused on high-level optintimati- such as compiling away unneeded
code —we have ignored most low-level optimizations. Thegesaveral obvious improvements that can
be made to the code generator. It would also be interestiagdexpression rewriting, such as that in
Vertigo. Support for additional backends, such as Direct>SH, is another obvious area Renaissance
could be improved.

One of the primary goals of Renaissance is to provide a fdiord&or creating shaders that can

flip functionality on and &. A good way to test the system would be to implement a sizattggn
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of the fixed function pipeline as a Renaissance shader. Ttigdralso provide the opportunity to do
comprehensive performance comparisons between variogigomations of the fixed function pipeline
and the equivalent (minimal) shader, as well as testing émopnance of shader compilation in Re-
naissance itself. It would also provide a basis for switglentire programs to using shaders all of the
time, rather than switching in and out of the fixed functiopgine. In the long run, we could envision
GPUs as being extremelyffieient and specialized vertex processors that only exebetedde given
to them. Shading logic would be entirely specified in custbiaders.

As shaders grow, we expect shader developers will want tbtepim into reusable components,
each component representing one concept. For example, @erfod doing varying forms of lighting
calculations could be shared across multiple shaders anjecis.

Debugging shaders can be veryhidult because the compilation and evaluation processesare s
opaque. We envision a shader debugging mode and tool whierenigdiate results can be viewed,
perhaps by selecting temporary evaluations and renddrerg to temporary lfters.

Finally, this project was guided largely by the belief thafuactional shading model is a better
cognitive model for shading in computer graphics than ak€{anguage is. This assumption must be

tested in a usability study for it to be considered valid.

Conclusion

We've shown the design and implementation of a functionallsig language. Renaissance is in-
tended to provide a framework for maintaining the orthodjpnaf concepts in shading calculations.
By basing the language on the syntax and semantics of pucddoal languages and adding the con-
cept of computational frequency, we provide this functlimavith implementation simplicity. We also
show the algorithms that demonstrate that this approachaisilile and féective, perhaps even more

efficient than a language based on C.
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4 A HUMAN FACTORS ANALYSIS OF A FUNCTIONAL SHADING LANGUAGE

A paper to be submitted t@©ommunications of the ACM

Chad Austin

Abstract

Renaissance is a functional programming language for fsfoegicomputation to be performed on
programmable graphics hardware, addressing some majolepts in existing systems. Additionally,
it was designed with a focus on usability. This paper pravide analysis of Renaissance, not from
a technical perspective, but from a human factors one. Inéxes Renaissance using the cognitive

dimensions framework and proposes a usability study.

Introduction

In the last half-decade, computer graphics hardware hagngttee capability for almost arbitrary
computation at the vertex and fragment levels. This cappatehables a slew of new surface and
lighting effects.

In the very early days of programmable shading, everythex to be programmed directly in an
assembly language. Collections of simple operations wertopned on registers of floating point
4-vectors, then written to outputs. Assembly languages m&ver been designed for writability and
readability, but they got the job done for a while. As more amate dfort went into the development
of shaders, high-level languages (drawing from experiémsbading from the filine rendering world)

were developed. These languages are a vast improvemenairednof ways, but do not go the entire



44

way towards making shader development realistic as a ceenpdplacement for the fixed function
pipeline. [reference first paper]

We have developed Renaissance to address two problemstofipsbvide a framework that makes
it easy to combine shading ideas without building a comp#idg@reprocessor on top of existing systems
and, second, to attend to build a system that is better thiahrexones in terms of cognitive load and
usability.

In this paper, we provide an analysis of the Renaissancerghkthguage in the context of human
factors. We briefly discuss the system’s intended audiewethen utilize a heuristic framework, the
cognitive dimensions, to provide a “broad brush” analydishe language and system. Finally, we

design a user study to qualitatively measure tiiectiveness of the system.

Related Work

Two areas have primarily led up to this research: realtimapmder graphics shading and the
psychology of programming. This paper primarily focusedlmsecond, but we will briefly discuss
the first for background.

By far the most popular shading language in ttiglioe shading world is Pixar's RenderMan.
RenderMan looks similar to C and programs that describehtheacteristics of lights and materials are
written in it. RenderMan has had much influence on the dedigeat-time languages. As mentioned
above, the real-time shading languages have evolved away dssembly languages to higher-level
languages commonly based on C, including HLSL, GLSL [22§ &g [16]. Cg has recently grown
“interfaces”, based loosely on Java, that begin to addiresgtoblem Renaissance solves, but not in
a satisfactory way. There are also metaprogramming systemel as Vertigo and Sh, that utilize a
host language to define the shaders. These are not suitaldgstems where the shaders should be
considered part of the 3D model file on disk. (The shader iswdhra description of the appearance as
the textures are.)

Psychology of programming has been an active area of rdssence the 1970s [19, 26]. The Psy-
chology of Programming SIG was established in 1987 to coatdiresearch in the areas of cognitive

psychology in software development as a whole. Recentlelienthere has been an increased interest
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in the psychology of programming in the mainstream. Micfbapplies a heuristic analysis, called the
cognitive dimensions (CDs), to their C# and .NET developnewis [5, 4]. The cognitive dimensions
are a set of mostly orthogonal axes in which a system can beagdgd. They are not intended to pro-
vide a rigorous analysis, but instead give the designer giraea of some of the human factors issues
inherent in the system. From there, the designer can comathpetential tests and changes that will
improve the system.

Renaissance consists of two primary pieces: the shadiggéaye itself and a runtime system that
hooks the shaders into the underlying graphics API, suchpenGL, so that they can actually be used.
We will often discuss them together, since we took a holigigev when designing them. Either part

would not be terribly useful on its own.

Approach

Analyzing a programming language in the context of humatofamn multiple axes can beffi
cult, especially when the language isn’t designed for germurpose programming, but also depends
on a great deal of specific knowledge — such as computer gigdhiear algebra, and the physics of
light. We do not pretend to know the best way to evaluate tktesy, and we certainly do not assume
that our design is necessarily better than existing sysfaitt'ough we certainly hope so!). What we
really want to know is how to test our system in comparisorhwiisting ones and discover whether
the design we created is actually better for some, if not jusstrs. We would also like to learn which
areas of the system could use improvement.

The first thing we will do is a traditional user analysis, ta geough idea of their relationship with
the software. Then we will dig into the cognitive dimensi@msl apply them if possible. Note that all
of the dimensions are not equally valuable in this analySisme might not even apply. But overall
they do a good job of capturing several important ideas. lIlyinsie design a potential usability study

to test the &ectiveness of the system.
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User Analysis

Using the persona definition technique from interactiorigiefs], we have defined three primary
user personas. Alan Cooper claims that reasoning abogidissnade more natural anffective when
designing in the context of realistic (although hypotteipeople instead of fferentiating “experts”
and “beginners”. Our three personas follow.

Aaron is an experienced graphics programmer. Having wookeseveral modern PC games, he’s
intimate with the operation of programmable graphics hard@vwand how to use it tafeciently imple-
ment many shading algorithms. He has traditionally dewedoihe shaders in an assembly language,
but recently has been using a high-level language (stiltking the generated code, of course!) be-
cause every frame per second counts. He reads every majputangraphics research paper and has
substantial linear algebra experience. Itis very unlikbbt Aaron will be receptive to a language that
hides the generated code. For shader specialization, henpamented a preprocessor that runs at
compile time and generates all of théfdrent shaders he needs for various configurations.

Steven has been working for a CAdhgineering company for ten years. He has developed and
maintained several key pieces of the graphics renderingsym their software over the years and
is very familiar with rendering large amounts of geometeyels of detail, andf&cient culling algo-
rithms. He understands some of the concepts in programnsablding but has not had the need or
desire to sit down and play with shaders.

Jennifer is a student in computer science with a minor inradtisitaking an introductory course in
computer graphics. She has written a few programs that rergteaded and lit model, but has only used
the fixed function pipeline and doesn’t understand all ofdbtails of how the fixed function pipeline
works. She knows that when she positions and colors lighipepty, they &ect the appearance of
the scene. She would like to learn how to write shaders scsti@tan implement her own lights and
material properties.

These three hypothetical users represent the audiencesw@geting with Renaissance.
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Cognitive Dimensions

The cognitive dimensions [8] are a popular heuristic frawwnitially created by Thomas Green
that are designed for quickly and easily evaluating a systdmare are 13 dimensions, each representing
an aspect of the system and has an impact on the ability of tesarork with it. They allow the designer
to get a general feel for the characteristics of the systdoréeunning expensive usability tests. Here,
we use them to help design a usability study tasks in the sction of the paper.

The cognitive dimensions take a complete view of a systera.nbiiation is the textual or graphical
view into structure. The environment is the way the notaisomanipulated. The system is defined as
both the notation and the environment.

For each of the dimensions, we will briefly discuss what itrigl #hen go into how it applies to

Renaissance. For more detailed description of the dimessgee the literature. [9]

Abstraction Gradient

For clarity, let us definabstraction as a conceptual object, a group of elements treated as oae. In
traditional programming language, a function is an abstra®ver a list of statements or operations.
A class in OOP is an abstraction for a data structure and af setabed operations. The abstraction
gradient represents whether users are required to leaimraetins before ffectively using the system
and whether they are allowed to use abstractions if they wart first glance, programming systems
can be defined as abstraction-hating, abstraction-tdlesaabstraction-hungry.

We consider Renaissance an abstraction tolerant systegrtwblmain abstractions in our language
are functions and types. It is never required to define fonstito write a useful shader. The simplest

shader looks like this:
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex

reading, “Define the output position as the multiplicatidrihee model-view-projection matrix and
the input vertex”. However, it is certainly possible to defimew functions if necessary. In the current
state of the implementation, it is not possible to define tgaes, but we do intend to implement that

in the future.
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One potential sticking point is Renaissance’s conceptagfency. Frequency can be thought of as
an abstraction over the shading stages in the graphicsmepé&lor most tasks, Renaissance’s frequency
analysis provides performance equal to or better than rgakia calculations explicit for each stage
of the pipeline. However, when optimizing a shader, the iaifphature of frequency and frequency
analysis may hide the impact of calculations done in theeshad the generated code’s performance.

The runtime support, since it is interfaced through+Chas a similar abstraction gradient te-€

That is, the creation of new abstractions is never necedsatris possible if needed.

Closeness of Mapping

Closeness of mapping represents the similarity of the tstres in the problem domain to the struc-
tures in the program. In an ideal language, concepts andtiepn domain would have a one-to-one
mapping with structures in the program. This would prevkatuser from having to break goals down
into programming sub-tasks in order to solve the problem.

We feel Renaissance has a very high closeness of mappirggiaip compared to existing sys-
tems. The lack of explicit types and frequency allows the tsepecify just the computations required
for the desired #ect. There is no extraneous syntax. Built-in inputs and wstpre made implicit
for this reason as well. The syntax of expressions in theuagg also comes very close to traditional
mathematical notation. Unlike C-like languages, fundiaith return types and parameter lists do not
have to be notated. Temporary variables and order of cailcnlare also made implicit in Renaissance,
under the premise that the compiler can do a better job thameah anyway.

Since every Renaissance object is constant once calctétetbes not have the problem where
users may think the value of global variables will persidisgen multiple shader executions on ele-
ments in the processing stream. This provides a closenéssdiethe syntax, the semantic model of
the shader, and the model of the shading pipeline as a whole.

In the above situations we have considered the problem dotodie that of shading computation
and dfects. If the problem domain is considered to be the actuailictions executed by the hardware

(for example, when optimizing or benchmarking code), Reswice has a low closeness of mapping

1This is called referential transparency in the functiomalgpamming literature and means that a function applietiéo t
same arguments will always have the same value, no matter iviseevaluated.
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rating. Minor changes in syntax, or even the values of comstgut, can &ect huge changes in the
generated code. The algorithm for splitting computatioto dhe diferent stages is neither obvious nor

made explicit in the notation.

Consistency

Consistency refers to the “guessability” of a system. Gikeawledge of some of the program
structure, how much of the rest can be guessed? Note thalictynprings about consistency simply
because there aren’t that many types of definitions, expressetc. For this reason, Renaissance
is consistent with itself. Examples follow. Uniform and stant inputs are specified with the same
objects in the runtime library. Also, the input specificatimbjects have the same name as the types that
they define as well as behaving like native types in both Rsaaice and €+ (bool can be implicitly

converted to and from Bool, etc.).

# Renaissance snippet

uniform bool booleanUniform

// C++ snippet
ren: :Bool booleanUniform(program, "booleanUniform");

booleanUniform = true;

Another area we improved consistency over traditional @g@gines is with swizzles. Swizzles are
a window into the operation of the underlying graphics handnthat has followed into high-level
shading languages; the elements of a vector can be arlyitreordered or ignoredvec.wxyz is the
same agvec4 vec.w vec.Xx vec.y vec.z). Rather than treating swizzles as special syntax, we
treat them as normal functiongwxyz vec) is valid) and define the syntak.B to be equivalent to
(B A), that is, apply the function B to A. This has an advantageamsequence. In object-oriented
languages, fields are accessed with dot notation: vectiéage length of the vector. In Renaissance,
that syntax is also valid; it calls the length function on veetor.

Another area of consistency involves function definitiod application. Since we based the syntax

of this language on the family of languages derived from Kfita, functions look like this:
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sumOf a bc=a+b+c

theResult = sumOf 15 25 35

Notice that the function definitiosumOf a b c and the function applicatioaum0f 15 25 35
have the same syntax.
Renaissance is also consistent with the language it isdniibp of, the OpenGL shading language

(GLSL). All built-in functions, inputs, outputs, and typaee taken directly from GLSL.

Diffuseness - Terseness

A notation with high dffuseness simply uses a larger amount of notation or scretpstage to
express its meaning. In other languages (APL, for examgjenpols carry a lot of meaning, by them-
selves, so fewer are needed to express a concept. Renaissasn very terse: types and frequencies
are implicit, and parentheses and commas are not necessamction calls. It also does not fer
from LISP’s paren-hell because most operators are usedixmiotation and have the same precedence
asin GLSL.

Often, terseness is a positive thing, as it implies the puogner needs to keep a smaller amount of
text in memory and on the screen. However, we feel Renaissaight be too terse for users. It might
not be easy for them to quickly scan text and understand itggiing. Hopefully, a user study will shed

some light on this issue.

Error-proneness

It is difficult to discuss the issue of error proneness when a systeewiamd has only a few users.
That said, we have come up with a set of potential sourcesafsglin no particular order:

In the Renaissance language, if an output is not definedgivén a default or unspecified value.
This means that if an output variable is misspelled, theutafion won’t even be performed and the
output will have an unexpected value. Since all built-inpoii$ begin with the prefigl_, it is pos-
sible to make it an error to provide custom definitions thajitevith g1_. This would make output

misspellings an error.
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Renaissance functions are defined without explicitly retgtg the types of the arguments. The
type of the result and the operations performed dependseotyples of the arguments given. Take the

following example.

add ab=a+b

The add function will work as expected if called with two integerstamo floats. If called with an
integer and a float, however, an error message is generatadrfside the add function, since a floating
point number and an integer can’t be added directly. In titiggon, the problem pretty obvious, but
as a shader grows, it won't be as obvious where the error isngpfrom. One way to address this
would be to add a type constraint system so that if a functioyp works with patterns of certain types,
that restriction can be expressed directly in the notatimpyoving the error messages.

An area of concern is that we expect most users of this sysidm wvery familiar with C, G+,
or similar languages. In those languages function calls th& formfunctionOver(a, b, c). In
Renaissance, they take the foffunctionOver a b c). functionOver (a b c) may seem to be
equivalent at first glance, but it has a veryféeient meaning: ApplfunctionOver to the result of
applying functiona to b andc.

These error situations are certainly not an exhaustiveTise usability study should bring up ones

we haven't thought of, as well as showing the actual impath®fones suggested.

Hard Mental Operations

Hard mental operations refer to notational constructs thiaén two or three are combined, vastly
increase the diculty of understanding, especially compared to the indislcconstructs. We have so
much experience with the system that we do not feel qualiGetttide which operations are especially

hard at the notational level. A larger user base and the litgagtudy should enlighten us on this.

Hidden Dependencies

Hidden dependencies are relationships between objedte isystem that are implicit andfficult

to uncover. If two functions call one to do some common wohlgrging that function may break one or
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both of the callers. This is a hidden dependency. The cagnitimensions are meant to be evaluated
in terms of both the notation and the environment used to podatie that notation. Given that this
research is on the language by itself, no special editor éas eveloped. When using a standard text
editor, the relationship from callees to callers is a hiddependency. It would be possible to develop
an editor that would make it easy to find these back-refesence

Another hidden dependency is between the notation and terated code, when compiled with
a certain set of constant values. A primary feature of Reaaise is that branches on constant values
can be used to specialize a shader for certain operatiohsgenerating code for the calculations that
must be performed. In a ficiently large shader with enough of these compile-timedwes, there is
no easy way to tell which functions actually generate code.

Finally, functions in Renaissance are actually syntaeinplates for a set of possible functions.
This means that if a function is called twice with argumerftdiferent type, it will actually generate
two functions — one specialized for each type. When lookiagpdinside a function, the types and

values of the arguments are not directly visible. This mayamunderstanding.

Premature Commitment

When outlining a document in a notebook with a pen, you neechdke sure to leave enough
room for the content between the headings. This is an exaofigeemature commitment, where the
user is required to make decisions when not ready. A probigrarent in all programmable shading
systems is that when shaders are used at all, they mustedhkaentirety of the fixed function pipeline.
Renaissance does not address this problem. Otherwisenlthdexcision required of the user is what
to output to the required vertex and fragment outputsPaggition and glFragColor. Beyond that,

everything can be developed incrementally.

Progressive Evaluation

Progressive evaluation refers to the ability of users tduawa their progress frequently. We feel
Renaissance allows for iterative changes at least as muchditsonal programming languages. Two

things must be true before a shader can be tested. The réquitiguts must be defined and the program
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must be syntactically correct.
This is an area where Renaissance, GLSL, HLSL, and Cg havevamiage over metaprogram-

ming systems. Since shaders can be directly loaded fromifieation time is reduced.

Role-Expressiveness

Role expressiveness is related t@wseness and terseness above. It refers to the self-ddsliyba
of the notation. When a user looks at a particular piece ofdeh a high degree of role expressiveness
means that the user will rapidly discover what that piecesdmeis for. Role expressiveness can be
improved through well named identifiers, comments, anddstahidioms. Renaissance supports these
secondary notations.

One part of the syntax we think might cause problems is thatioot for applying functions to
arguments. In traditional mathematical notatidifx, sin(y)) + 10 would be the representation
for “f applied to x and the sine of y, added to 10”. Since Resatige uses Miranda’s syntax, the above
could be writtenf x (sin y) + 10 which seems to hide the order of evaluation. Users may tend to

explicitly insert parentheses to make the the order morbatxp(£f x (sin y)) + 10

Secondary Notation

Secondary notation encompasses all of the ways a progracamencode meaning in the program,
beyond that which is required for correct execution. Thastude identifier names, comments, use of
whitespace, and grouping of similar structures. Renatesathows most of these, but it uses whitespace

as end-of-line punctuation so arbitrary use of whitespacesdtricted.

Viscosity

Viscosity refers to the amount of work required to make a sowmiceptual change. Renaming a
class in G-+ is an example of something that has very high viscosity — gaalbr file must be changed
(and even renamed), and the name must be changed in thepoowi@sy source file and anywhere the
class is used. The notation has high viscosity, but a refagtdrowser may make this operation much

simpler, reducing its viscosity. (Remember: Systefotation+ Environment)
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Renaissance is such a small and experimental system thabmitesde any highly viscous areas.
One thing that requires multiple changes would be chandieghame of an input. The name would
have be changed in the shader, in the code that referendaththa, and perhaps the name of thetC
input objects would be updated. Metaprogramming systemwes &ia advantage here because inputs are

tied directly to the host language — updating and refergnttie shader inputs is more direct.

Visibility and Juxtaposability

A system with low visibility makes it cognitively dicult to bring related structures into view.
Juxtaposability refers to the ability to view objects slieside. These dimensions primarily focus on
the editing environment. Since a Renaissance shader isgiourrent implementation) entirely in one
file, visibility and juxtaposability depend on the text editised. This dimension would be much more

relevant for a specialized shader editor.

Design of a User Study

Now that the CDs have given us a look at some of the cognitipedas of the system, we present
a usability study to begin to explore these issues. We hawvegvals with this study: 1) perform a
comparison between Renaissance and an existing, starttadohg system, GLSL, and 2) gain qual-
itative information about theffectiveness of our design. We are not necessarily inter@stggecific
guantitative results — they would be too specific and coutt the overall value of the system. The

forest for the trees, so to speak.

Subject Selection

Ideally, we would like to test Renaissance with subjects wtwat least moderately familiar with
computer graphics, but do not have much shading languagerierpe. If possible, we would like a
suficiently large group to cover the three roles we have definegi@lSince this is such a specialized
audience, we actually expect to perform the test on people lvalve moderate to extensive graphics

experience, even if they've used existing shading langslage
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Format

We will split the group at random into two. One will be using &L and the other Renaissance
for the tasks below. The first thing we’ll do is administer asgfionnaire to discover the background
and previous experience of the individual participantsertve will provide a classroom-type lecture
to make sure everyone understands the shading pipelinecsnddta flows through it. There are three

things we must make clear about shaders in general:

e How vertices get put into the pipeline by the application.
¢ What the fixed function pipeline does, and how it can be requldry programmable shaders.

e How resulting fragments get written to the screen.

Since Renaissance and GLSL have the same data types anid fuiittions, we then must discuss

them:

e Scalars, vectors, and matrices
e The functions and operators in the language.

e Provided inputs and outputs.

This educational session is given after the questionnailesto avoid fiecting the results. It also

mitigates the ffect of the subject’s previous experience on the test.

Tasks

The test itself consists of five tasks. They are designeditd o understanding in a linear order.
The tasks happen sequentially, in one session, expectedttabout two hours. The subject sits at a
computer while the administrator watches, takes notespamddes assistance if necessary. A “cheat

sheet” and reference documentation are available for betiGL SL group and the Renaissance group.
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Task 1

The first task is designed to get the subject familiar withingi Renaissance shaders. The instruc-
tions are “Write a shader that writes a vertex transformethbyprojection and model-view matrices
to the output position, and writes the color white to the atitolor.” The result in Renaissance should

look something like:

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex

gl_FragColor = vec4 1.0 1.0 1.0 1.0
The equivalent in GLSL:

// simple.vert
void main() {

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

// simple.frag
void main() {

gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);

The subject is given a program that loads the shader and dréepot with it.

Task 2

The second task is the other half of the first one: the submeatldps the parts of the program that
must load and execute the shader. A program skeleton isgaavhat initializes OpenGL, handles the
window, and other tasks unrelated to the usability studye 3ibject is required to load the shader,
check for errors, and bind it to GL.

The first two tasks are primarily intended to judge the ihitieerhead required in using Renais-
sance. Can understanding at first impression be improveddrganizing documentation? Renaming

some of the objects in Renaissance? How long does it take tgpgand running compared with GLSL?
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Task 3

Task #3 concerns itself with thefert involved in a relatively simple and straightforward obe
to the shader: adding an input uniform. The task instrustiare “Add an input uniform to the shader,
and set the output color to the value of this uniform. Thery¥ae color in the program to verify that
it works.” This task has two components: adding the unifoonthie shader itself and setting its value
from the program. The first should be very straightforwarce &pect the second to be significantly

easier in Renaissance than GLSL, simply because GLSL istaAPI that is intended to look familiar.

Task 4

The fourth task takes advantage of a primary Renaissant@rdeautomatically lifting computa-
tion from the fragment shader to the vertex shader. We wasstavhether the unified vertex-fragment
shader model of Renaissance makes cross-stage calcslatioh as lighting substantially easier. The
task is to add a new set of uniforms representing a light ambpe a per-fragment lighting model
in the shader. The subject is given the required paramenersh@ mathematical equations needed to
implement the light model and is expected to develop a shadaoperly shade an object.

The GLSL group, due to the separation of fragment and vetiagers, have two possible imple-
mentations. They may perform all of the computation in tla@ment shader at reduced performance
but increased readability. More experienced users arly likautomatically perform vertex-dependent
calculations on the vertex pipeline and pipe them througikings, even though this is more complex,
time-consuming, and prone to error.

An area of interest here is whether GLSL users have troubddindewith the vertex-fragment
separation or if it comes naturally. It's also possible tifnaty will try to put too much computation in

the vertex stage, attempting to interpolate the result®pflmear calculations.

Task 5

The fifth and final task focuses on the compile-time frequear@lysis. Since GLSL has no analog
of Renaissance’s constant frequency calculation, beaigesprocessor on top of the source text, which

would take substantialfiort to implement, this task is only performed with the Regaiwe subject
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group. The goal is to implement one shader with two shadiggrahms and a compile-time switch to
select which one to use. donstant bool selector inputwill have to be added anyd _FragColor
must be defined asf selector then algorithml else algorithm2. We are interested in three

things:
e Does it make sense to use the same data input mechanism iordratants and uniforms?
¢ Does the user understand that the shader is recompiled wtmrstant is changed?

e Does the user understand that the branch statement is wallpaixecuted in the instructions

sent to the hardware?

Comments

It is important to remember that this usability study is gagive — it is not intended to show
statistically significant dferences. Instead, we intend for it to uncover future areasvestigation.

That said, we believe several important results would baioéd.

Future Work

The next step is obvious: The usability study must be perfaknhe results gathered and ana-
lyzed, and Renaissance changed or clarified in responseonBehat, since Renaissance is such a
simple functional language and GLSL is such a simple imperdanguage, shaders could be used as
a reasonable basis for quantitative, statistically sigaift comparisons of imperative and functional

programming in general.

Conclusion

We have shown a preliminary human factors analysis of thdisgdanguage design we have
created. The cognitive dimensions have allowed us to pdmiglalevel picture of the impact of our
system on human behavior and uncovered areas for futurarobsand investigation. We then presented
a design for a usability study to test some of our assumptmiaisdecisions. The study is intended to

lead into specific follow-on studies measuring tlfieetiveness of specific other aspects of the system.
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Based on our initial observations, Renaissance’s usahilitks favorable compared to other sys-
tem, primarily because it handles the work of splitting wiie shader developer writegfieiently
onto the diferent processors. Since it also addresses the major pratbieomorthogonality in existing
shading systems, we have hopes that it or a similar desigb@gbme the primary way people develop

real-time shaders.
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5 GENERAL CONCLUSIONS

General Discussion

Chapter 2, the first paper, introduced the design of a funatishading language that provides
an elegant design for addressing the problems of shadepmioogonality and automatic lifting of
computation onto previous shader stages. The second papes shat the design is feasible and
provide specific algorithms for implementation. Finallyetthird paper evaluates the language with a
human factors approach.

By basing Renaissance on the lambda calculus and a form ggdstzomputation, we have de-
signed a language that has syntax and semantics straighttbenough to address computation at all
four stages of graphics hardware. This method enalffesemit shader specialization without any pre-
processors or additional syntax. Additionally, we beliéveas the benefit of being easier to use than

existing shading systems.

Recommendations for Future Research

In the future, we would like to see this system or a similar pravide the foundation for shading
on graphics hardware. We can envision a time when graphicsvaae evolves into very fast, parallel
vector processors that don’'t have any silicon dedicatecpémic graphics operations. That logic
would be provided by a shader in software which could be coigted by arbitrary applications. In
some sense, this is possible today, but there is no way t@pelhGL to use a éierent lighting model
or to use per-pixel shading without writing a shader for there pipeline. As a proof of concept, we
would like to develop a shader for the majority of the fixeddtion pipeline in Renaissance.

As we are in control of the software used to generate theucisbns in the shading pipeline,
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there are opportunities in shader debugging tools. It wbelghossible to build a debugger on top of
Renaissance that interactively renders temporary regultse framebffer. Something like this will
become increasingly important as shaders grow in complezgipecially if we have the bulk of the
fixed-function pipeline implemented in Renaissance.

There are obviously several improvements that could be tiotiee code generation portion. One
interesting aspect of optimization is addressing the tenbetween temporary storage and number of
instructions. There is also a restricted number of interfpolunits, so an algorithm tdfiently stay
within the allowed number would be important.

Since human factors were a concern throughout the progesign, we would like to validate our
decisions. Chapter four of this thesis presents a desiga fmwability study. Once it is performed,

additional insights into the usability of Renaissance #hguide further design and refinements.
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