
Renaissance: a functional shading language

by

Chad Anthony Austin

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Human Computer Interaction

Program of Study Committee:
Dirk Reiners, Major Professor

Gary Leavens
Adrian Sannier

Iowa State University

Ames, Iowa

2005

Copyright c© Chad Anthony Austin, 2005. All rights reserved.

ii

Graduate College
Iowa State University

This is to certify that the Master’s thesis of

Chad Anthony Austin

has met the thesis requirements of Iowa State University

Major Professor

For the Major Program

iii

TABLE OF CONTENTS

1 GENERAL INTRODUCTION .. 1

Introduction 1

Thesis Organization 2

2 RENAISSANCE: A FUNCTIONAL SHADING LANGUAGE 3

Abstract .. . 3

Introduction 3

Related Work .. . 4

Multi-Pass Texture Blending 4

RTSL . 5

Assembly Languages (ARBfp, ARBvp, DirectX shader models) 5

Cg, HLSL . 6

GLSL . 6

Sh . 6

Vertigo . 7

Contributions 8

Key Design Decisions 8

Functional Model .. 8

Frequency and Type Inference 10

Single Shader for Both Vertex and Pixel Pipelines 12

Shaders As Data Files .. . 12

System Overview 13

Language Description 14

iv

Inputs . 14

Definitions .15

Types . 15

Built-In Functions, Operators, and State 16

Overloading and Swizzling 16

Composability .. 17

Abstraction Facilities 17

Runtime Description 19

Compiler Backend .19

Future Work .. . 20

Conclusion .. . 20

Acknowledgments 21

3 THE IMPLEMENTATION OF A FUNCTIONAL SHADING LANGUAGE 23

Abstract .. . 23

Introduction 23

Related Work .. . 24

Shading Languages .. 24

Staged Computation .. . 27

Functional Programming 27

Motivation and Contributions 28

Shading Pipeline 29

Application .29

Vertex processor .. . 29

Interpolators .. . 29

Fragment processor .. . 30

Language Overview 30

Introduction .. 30

Frequency . 30

v

Types . 32

Ad Hoc Overloading .32

Expressions .33

Inputs and Outputs .. 33

Compiler Implementation 34

Parsing . 34

Building the Lambda Graph .. . 34

Lambda Reduction .35

Constant Evaluation 37

GLSL Shader Generation .. . 37

Lifting . 38

Optimization .39

Code Generation .39

Runtime Implementation 40

Compilation .40

Data Input . 41

Future Work .. . 41

Conclusion .. . 42

4 A HUMAN FACTORS ANALYSIS OF A FUNCTIONAL SHADING LANGUAGE . . 43

Abstract .. . 43

Introduction 43

Related Work .. . 44

Approach .. 45

User Analysis 46

Cognitive Dimensions 47

Abstraction Gradient 47

Closeness of Mapping .. . 48

Consistency .49

vi

Diffuseness - Terseness .50

Error-proneness .. . 50

Hard Mental Operations .. . 51

Hidden Dependencies .. . 51

Premature Commitment .. . 52

Progressive Evaluation 52

Role-Expressiveness 53

Secondary Notation .. . 53

Viscosity . 53

Visibility and Juxtaposability 54

Design of a User Study 54

Subject Selection .. . 54

Format . 55

Tasks . 55

Task 5 . 57

Comments . 58

Future Work .. . 58

Conclusion .. . 58

5 GENERAL CONCLUSIONS .. 60

General Discussion 60

Recommendations for Future Research 60

BIBLIOGRAPHY .. . 62

ACKNOWLEDGMENTS .. 65

1

1 GENERAL INTRODUCTION

Introduction

Real-time computer graphics hardware has experienced a revolution in the last decade. The days

of low-polygon, flat-shaded scenes has long passed: modern graphics accelerators are capable of stag-

gering amounts of geometric detail as well as custom light and material properties on every triangle.

Consumer hardware, driven primarily by games, has caught upto and surpassed the traditional work-

station graphics processors. In terms of sheer floating point operations per second, modern graphics

processors (GPUs) are significantly faster than even general-purpose CPUs. [11]

With this increase in raw power, we have also seen a drastic increase in the flexibility of GPUs.

Early GPUs had limited shading capabilities – the best one could hope for was the ability to blend

between multiple textures, maybe even with a custom blend operation. Now we have the ability to per-

form arbitrary calculation on any geometric or color data that’s passed down the graphics pipeline, by

uploading custom programs, called shaders, written in an assembly language or even C-like languages

[16, 22] to the graphics card. With effectively infinite instruction limits and large amounts of temporary

storage, the limiting factor in a shading algorithm is the GPU’s speed.

The programmability of these processors has come at a cost: if a programmer wishes to execute

any custom operations, the entire programmable stage of thepipeline must be implemented. The vertex

transformation part of the pipeline can’t be customized without implementing lighting as well. This is

unlike the traditional fixed-function pipeline, where lighting, texturing, and other graphics processing

could all be enabled or configured separately. This problem of shader non-orthogonality could prevent

shaders from becoming a standard part of every graphics program. Additionally, shaders require a fair

amount of additional work over the fixed function pipeline for most graphics tasks.

We have a developed Renaissance, a new shading language on top of the OpenGL Shading Lan-

2

guage that addresses these problems. It was designed with three goals in mind:

• Allow shaders to have functionality switched on and off without reducing functionality at run-

time, like the fixed-function pipeline.

• Tight integration with the host language to bring shader development to a wider audience.

• To explore a functional programming model for the programmable graphics pipeline.

Thesis Organization

This thesis is organized in the form of three scientific papers prepared for submission to conferences

or journals. Each paper captures one core aspect of the system as a whole, and they are all written for

different audiences. We will now introduce each paper and show how it fits into this thesis.

The first paper, Renaissance: A Functional Shading Language, is intended for a graphics audience,

likely very familiar with existing shading systems. It introduces the project and shows how the existing

shading systems have led up to this research. It also explains the design of the language and briefly

discusses the operation of the compiler and runtime.

The second paper, The Implementation of a Functional Shading Language, focuses, as the title

implies, on the algorithms and techniques required to implement the language. It shows implementation

feasibility and some of the interesting results of applyinga pure functional language to the shading

problem domain. This paper is written for a programming languages audience.

Finally, the third paper is an evaluation of the Renaissancewith a human factors approach. An

analysis of the language is provided with the help of a heuristic tool, the cognitive dimensions, and a

usability study is designed to test some parts of the system.This paper is written for an HCI audience.

Each paper contains a review of existing literature on the relevant subjects.

3

2 RENAISSANCE: A FUNCTIONAL SHADING LANGUAGE

A paper to be submitted toI3D 2006: Symposium on Interactive 3D Graphics and Games

Chad Austin1 and Dirk Reiners2

Abstract

Programmable graphics hardware is growing in capability and flexibility at a rapid pace. Exist-

ing languages for programming this hardware make it difficult at best to build collections of custom

graphics algorithms that can be combined as needed. We present a pure functional shading language,

Renaissance, that uses the concepts of computational frequency and frequency inference to naturally

allow composition of shader concepts without generating redundant code. We also provide most of the

benefits of metaprogramming languages without the restriction of requiring a full host environment.

Introduction

The most important innovation in computer graphics hardware over the last decade has been the

introduction of programmability. Textures were a first steptowards fine-grain control over the rendered

pixels, and together with multi-pass rendering and later multi-textured pipeline configurability they

allowed some basic implementations of user-specific calculations in the graphics hardware. But map-

ping general algorithms to the very limited and non-intuitive operations that were possible in this way

remained something of a black art, as witnessed by the many papers that were published on mapping

specific algorithms to graphics hardware, e.g. [12, 14].

1Graduate student, primary author and researcher
2Assistant Professor, Department of Computer Science, IowaState University

4

Offline rendering for animation had been using much more generallanguages for a long time [10],

and some attempts were made to map them to a slightly extendedversion of the fixed-function OpenGL

pipeline [20]. But the real breakthrough came with actual programs that were executed on the graphics

hardware.

The first steps were assembly languages for register machines. This was a great step forward for

generalizing graphics hardware, but it had its limitations. The shading algorithms were not easy to

follow and it was hard to create building blocks of functionality on which the rest of the shader was

built. The next natural step was a high-level language builton top of the assembly. These languages

often look like C, both in syntax and semantics. There are also metaprogramming languages built

on top of a host language. These allow tight integration between the host language and the graphics

processor as well as straightforward shader specialization.

With the advent of Cg’s interface features and looking at shaders (i.e. a program or programs that

runs on the GPU) as elements of an algebra [18], we’re just nowstarting to see support for composable

shaders.

In this work we introduce a shading language built on modern functional languages and their pure

semantics instead of the procedural roots used before. The functional approach significantly simplifies

compilation and analysis of the program, opening up new avenues for more general optimizations and

compositions.

Related Work

Multi-Pass Texture Blending

Real-time programmable shading appeared in an early form asmulti-pass rendering along with

multi-texturing blend modes. The Quake 3 engine for exampleprovided a simple shader scripting

language to control the number of passes, texture stages, and rendering states. This isn’t a complete

solution for general shading, but it goes a long way towards allowing the implementation of several

surface appearances. Peercy, Olano et al. discovered that an OpenGL implementation, with some key

extensions, can be treated as a general-purpose SIMD computer in their OpenGL Shader work [20].

OpenGL Shader can support arbitrary shading computation, using multiple rendering passes.

5

However, the trend for processors in general and graphics processors specifically has gone towards

higher clock speeds on the processor, but slower and higher latency memory access. This precludes

large-scale multipass implementations of shading from being viable, due to the very high memory

bandwidth requirements.

RTSL

Stanford’s real time programmable shading system, RTSL [21], introduced the concept of com-

putational frequency. They defined four frequencies: constant, primitive group, vertex, and fragment.

Constant computation is done at shader compile time and not during the processing of geometry. Prim-

itive group computation is done per batch of geometry, whilevertex and fragment computations are

done per vertex and per fragment, respectively. RTSL has a retargetable backend that can map vertex

computation to either the CPU or to basic programmable vertex hardware. Fragment computation is

mapped to multi-pass OpenGL, as in OpenGL Shader above, or early fragment processing hardware

like NVIDIA’s register combiners. Their shading language did not separate vertex and fragment as

the compiler was responsible for splitting the work up amongthe various computational stages. They

allowed explicit specification of where computation is to bedone; for example, to easily compare two

lighting algorithms, one per vertex and the other per fragment.

Assembly Languages (ARBfp, ARBvp, DirectX shader models)

The next generation of shading languages allowed full programmability at the vertex and pixel

levels via assembly languages for a vector based register machine architecture. Although the instruction

sets were limited at first, the languages allowed arbitrary computation per vertex and per fragment.

They are more efficient than the multi-pass approaches above, because they require much less memory

bandwidth. One obvious disadvantage of assembly languagesis that they are difficult for people to write

and understand, as well as maintain, especially when programs get larger. One principal advantage of

assembly languages is that they are directly executed by theunderlying hardware. Due to the variability

of graphics hardware, between and within vendors, this is rarely the case for shader languages, making

them less attractive.

6

Cg, HLSL

Naturally, the next step beyond an assembly language is a high-level language that compiles to it.

Cg [16] and HLSL were created by NVIDIA and Microsoft, respectively, as C-like, high-level shading

languages. HLSL compiles to the Microsoft-defined DirectX vertex and pixel shader models, which

are loaded into the card at runtime. Cg, on the other hand, compiles to a variety of back ends and is

graphics API neutral. The most recent NVIDIA cards have support for Cg in the driver itself, requiring

no special compilation step.

When referring to the language used by both Cg and HLSL, I willcall it simply Cg. For the sake

of compatibility with other shading systems, and transparent access to the underlying hardware, Cg

does very little work for the user. She is required to specifyhow data is transferred into the shaders

and which attribute channels map to what. By design, Cg also does not virtualize any resources, if a

feature is not available. One of Cg’s primary goals is to be asclose to the hardware as possible while

maintaining a higher level of abstraction.

GLSL

While Cg and HLSL were being developed, 3DLabs and the OpenGLArchitecture Review Board

were designing a shading language for the future of OpenGL. The OpenGL Shading Language (GLSL

[22]) had different goals than Cg and HLSL. It was intended to become part ofthe OpenGL standard,

replacing the assembly languages. OpenGL implementers must have the shader compiler in the driver

itself, as opposed to an external process. This increases driver complexity, but means that applications

that use GLSL benefit from driver upgrades and compiler improvements for free. It is also a forward

thinking language design in that it requires all implementers to support things like conditionals and

loops even if they can’t do it in hardware. It requires virtualization of resources not visible to the

shader writer, such as temporary registers and instructioncount.

Sh

Sh [17] isn’t exactly a language, per se. It is a metaprogramming system on top of C++ designed

for building shaders. Sh is implemented through a set of custom C++ objects that build an internal

7

program representation when operations are applied to them. This program is compiled to an under-

lying shader that is run directly on the graphics card. The advantage of a metaprogramming system

such as this is that it has very tight integration with the host language. If the shader references a global

variable, and assignments are made to that global variable outside the definition of the shader, the data

is automatically passed in as a uniform. Also, it is natural to use the host language’s features in order

to specialize shaders. For example, if the shader contains an if statement, two different shaders may

be generated, based on the outcome of the condition.

Sh’s primary disadvantage is that it requires a full C++ compiler to use a shader. Thus, shaders

can’t easily be passed along with 3D models, limiting their usefulness to people who aren’t program-

mers. That said, there are some uses for shaders where a metaprogramming approach is ideal; such as

implementation of custom graphics algorithms tightly bound to the application.

Vertigo

Vertigo [7] is a metaprogramming system like Sh, but built ontop of Haskell instead of C++. The

interesting aspects of Vertigo are that it is a functional language and uses expression rewriting for op-

timization. Expression rewriting allows it to do an optimalsearch of expression space to reduce the

amount of computation necessary in a particular evaluation. A compelling example is that of vector

normalization. Vector normalization is a common operationin graphics programs. When writing a

procedure, there is a choice between accepting a normalizedvector or a potentially non-normalized

vector and then normalizing it explicitly. Since normalization is expensive, normalizing a vector twice

should be avoided. However, in a functional language it is possible to take advantage of referen-

tial transparency and expression rewriting to reduce the expressionnormalize (normalize v) to

normalize v. Once this optimization is available, there is no reason notto normalize a vector, if it

needs to be. Redundant normalize calls are optimized away. Vertigo shows how this is done in an

elegant and automatic way.

8

Contributions

In this paper we introduce a programming language for real-time graphics hardware that we believe

addresses many of the problems in the existing languages, discussed above. This language draws

from research in modern, pure functional languages, such asMiranda, Haskell, and Clean. We base

our design on functional languages for a variety of reasons.First, functional languages are a very

natural fit to the programming model exposed by graphics hardware. Second, functional languages are

traditionally easier to efficiently compile than imperative languages with side effects, such as C. Third,

our language is designed to have a minimum of extraneous syntax, making it much easier to learn and

read.

This paper’s primary contributions are the following:

• A pure functional programming language with a straightforward semantic model and syntax

• Automatic computational frequency inference for optimal partitioning of program execution to

four stages of the graphics pipeline

• Natural shader composability that follows naturally from the simple execution model and fre-

quency inference

Key Design Decisions

Functional Model

Renaissance is based on the syntax and semantics of modern, typed, pure functional languages,

specifically the family consisting of Miranda, Haskell, Clean. Since we don’t expect our audience to

be familiar with the syntax or semantics of these languages,the following will introduce the look and

feel with an example.

pi = 3.1415927

square x = x * x

circumference r = pi * square r

9

The first line defines a namepi to have an approximate value of pi. The second line defines a

function calledsquare that takes one parameter and returns its square. The third line defines the cir-

cumference, given a radius, to be pi times the square of the radius.square r is the syntax for function

application, and it means “apply the function square to the value r”. Notice that the example does not

make any types explicit. Types are inferred based on a definition’s expression and any arguments. So,

above,pi has typefloat. square’s type ist -> t, meaning “a function that takes type t and returns

type t”, where t is the type of the arguments. Sosquare 10 has typeint andsquare 10.0 has type

float. This type inference is discussed in detail later.

There are no loops or variable assignments in this language.Every object, once created, cannot be

changed. This is called referential transparency, which refers to the fact that if the same function twice

is called twice with the same arguments, the same result willbe returned.

Modern GPUs have a stream programming model: there is a stream of data elements (vertices

or fragments) and a function is applied across all of them. This function, in stream programming

terminology, is called a kernel. Since all of the stream elements are independent, the function can be

run in parallel without any sort of synchronization or data dependency analysis. This is largely the

reason why graphics processors these days are so efficient: performance increases linearly with the

number of processors available. Previous shading languages have semantic models similar to C; that

is, variables that can be modified and read from. Further, theorder statements are executed is critical.

Consider the C-like code in figure 2.1.

The value ofa at the end ofmain() is either 9 or 5, depending on whetherfoo() or bar() is called

first. In general, this restriction complicates the compiler’s task of optimization and static analysis. A

functional language, on the other hand, is given a lot of freedom to reorder evaluations, because all

dependencies are explicit and no evaluation has side effects. For specialized tasks, functional languages

have been shown to perform much more efficiently than equivalent C code.

As hardware programmability increases in capability and shaders get longer and larger, we believe

a functional language will scale in both performance and maintainability more than a language based

on the imperative model of C.

10

int a = 1;

int foo() {

a += 2;

// Some code.

return 10;

}

int bar() {

a *= 3;

// Other code.

return 15;

}

void main() {

int sum = foo() + bar();

// do something with a

}

Figure 2.1 C code example

Even ignoring the performance and “compiler-friendly” issues, functional languages are a better

mental model for the humans writing shaders as well. They make explicit that an operation on a stream

element has no side effects beyond the output value. Other shading languages must explicitly document

that modifications to global variables do not affect the program’s operation on other stream elements.

Frequency and Type Inference

Renaissance is a statically typed language, as in C++, other shading systems, and most pure func-

tional languages. That is, the type of an expression is associated with its name, not its value. However,

Renaissance infers the type of an expression from context, so no types need be specified explicitly.

Consider:

foo a b = a + bar b

bar b = b + 2

result = foo 10 4

Notice that no types are explicitly specified. However, whenresult is evaluated,foo is called

with two integers and returns the sum of the first andbar of the second. The result of this addition is an

11

integer as well, so the valueresult has typeint. Consider the definition of a function that normalizes

a vector:

normalize v = v / length v

The operation of the function is clear even though its argument and return types are not specified.

This has a surprising side effect: thenormalize function actually represents several functions, each of

different type. Given that division by a scalar and the length function can operate on multiple types of

vectors, normalize will work with any vector. This is similar in practice to C++ template functions.

Alongside each expression’s type, we also maintain a computational frequency, a concept intro-

duced by Stanford’s RTSL. There are four frequencies: constant (per compile), uniform (per primitive

group), vertex (per vertex), and fragment (per fragment). Built-in shader inputs each have a specified

frequency. For example,gl_Vertex has the frequencyvertex. gl_FragCoord has the frequency

fragment. If an operation on two expressions that have different frequencies is performed, the result-

ing expression usually has the higher of the two. One exception is theif construct: if the condition

has constant frequency, theif is evaluated at compile-time, and, if true, the resulting frequency is the

frequency of theif-true expression. Otherwise, it is the frequency of theif-false expression.

Outputs have a required frequency as well. Thegl_Position output has frequencyvertex and

gl_FragColor output has frequencyfragment. It is an error to definegl_Position to be an ex-

pression with frequencyfragment. Outputs must have frequency less than or equal to their definition.

Now assume thatgl_FragColor depends on the normalized, transformed normal:

gl_FragColor = dependsOn (

normalize (gl_NormalMatrix * gl_Normal))

gl_NormalMatrix has frequencyuniform andgl_Normal has frequencyvertex. Thus, the nor-

mal transformation can be done on the vertex processor. It looks at first glance like thenormalize call

can be moved up to the vertex processor too, but, since it is a nonlinear operation and the fragment

interpolators linearly interpolate, the normalization must be done on the fragment processor. Concep-

tually, all operations are done on the fragment processor, and lifted to earlier stages of the pipeline if

possible.

12

Single Shader for Both Vertex and Pixel Pipelines

In contrast with the most popular real-time shading languages today, Cg, HLSL, and GLSL, we

decided to blur the distinction between vertex shaders and fragment shaders. One concern raised by

NVIDIA in the design of Cg is that the different processors support different functionality, and by

making the programs explicitly separate, the differences are made clear[16]. However, recent trends

suggest that the vertex and fragment processors will grow closer in functionality, rather than farther

apart. Microsoft’s new graphics standard, the Windows Graphics Foundation (WGF, aka DirectX 10)

is pushing for a unified processor architecture for both the vertex and fragment parts of the pipeline [2].

ATI technology has also recently been issued a patent on a multi-threaded graphics core that hides the

distinction between vertex and fragment units [15, 1]. Withthis in mind, we feel the potential confusion

caused by executing “one” program on two potentially-different processors (in addition to the CPU) is

worth the benefit in improved shader clarity, maintainability, and optimization.

To mitigate the potential confusion brought about by this approach, we may allow specification of

computational frequency explicitly, as RTSL does. If a lower frequency is specified for a result than

the values it depends on (for example, if it is claimed that a result has a frequency ofvertex but it de-

pends on thefragment-frequencygl_FragCoord value), a compile-time error is raised. Conversely,

explicitly specifying a higher frequency than would be inferred would force computation to occur later

in the pipeline, which could be a performance improvement insome cases.

Shaders As Data Files

Following the example set by Cg and GLSL, it is critical that shaders can be treated as data files

so that they can travel along with the models whose surfaces they describe. Requiring a compilation

step before being able to load or use a shader greatly increases the amount of time it takes to iterate

changes, especially for shader building tools and people who aren’t programmers. For this reason,

the approach taken by metaprogramming shading systems is infeasible for many uses of shaders, such

as in games and modeling software. The convenience of being able to use a fully-featured general-

purpose language for generation of shaders is offset by the requirement of having a complete C++ or

Haskell compiler in order to use them at all. Further, the basis of functional programming languages,

13

the lambda calculus, provides a high degree of abstraction and notational convenience even with a

naive implementation [13]. Therefore, we can provide many of the important features of other high-

level languages, such as higher-order functions and specialization, with a minimum of effort. Also,

Vertigo shows that an optimizing compiler from a functionallanguage to GPU architectures is relatively

straightforward, especially compared to an optimizing C compiler. In short, we believe a “small”

functional language with a simple and powerful semantic model can satisfy the needs of shaders just as

well as the metaprogramming systems, without the requirement of a host environment.

System Overview

The Renaissance system is implemented in C++ and split into two pieces: the language, including

its compiler, and the shader management API. For simplicityof implementation and to leverage the

extensive design work that went into the OpenGL Shading Language, we have chosen GLSL as the

basis for a large portion of our language.

When the program loads a shader, it is parsed, validated, andtype checked into an intermediate

program structure. The program can then set the value of any constant inputs. When the program is

bound, it is compiled into code that can run on the GPU, optimized for the constant values that have

been set. This part is what enables efficient specialization and composition. The generated code is

cached with the constants used to create it so recompilationis not necessary when switching back and

forth between shader states.

Setting uniforms and attributes does not invoke recompilation, since their values do not affect the

structure of the generated code.

One of the niceties of metaprogramming languages is that theinterface between the host program

and the shader is very convenient, since it can use native data types and structures. Contrast this with

the OpenGL Shading Language APIs which require querying andmanaging uniform indices, and use

function names with ’warts’ to distinguish between settingdifferent uniform types: glUniform1f and

glUniform2i etc. We can get close to the convenience of a metaprogramming language by providing

custom C++ types that hide the internal data transfers.

ren::Bool enableBones(program, "enableBones");

14

enableBones = true;

program->bind(); // Compiles if necessary.

enableBones = false;

program->bind(); // Compiles if necessary.

enableBones = true;

program->bind(); // Does not compile, already done.

The next two sections define the language and the compiler in more detail.

Language Description

The syntax and semantics of Renaissance are very similar to the languages Miranda, Haskell, and

Clean.

A program consists of two components: inputs and definitions. Each is separated by a newline.

(Renaissance is whitespace-sensitive.)

Inputs

There are three types of inputs, one for each of the first threecomputational frequencies: constants,

uniforms, and vertex attributes. Constant values are takeninto account at compile time, uniforms at

primitive group time, and attributes per vertex. Since their type cannot be inferred, it must be made

explicit:

constant bool enablePerPixelLighting

uniform mat3 colorMatrix

attribute float temperature

15

Definitions

A definition either specifies a value or a function, with the general form: name (arguments)*=

expression

value = 2 + 2

function arg1 arg2 = arg1 / arg2

value is a value of type int and function is a function of types * t -> u (takes two values of

potentially different types and returns the type of dividing the first by the second). function’s return

type is not evaluated until it is called with arguments. In this sense,function actually refers to a

template of possible functions which are instantiated whencalled.

Expressions consist of infix operators and function applications. Precedence of operations is the

same as in GLSL. Operators are discussed more fully in a latersection.

Evaluation of functions is done lazily, as in Miranda, Haskell, and Clean. This prevents redundant

code generation:

constant bool doExpensive

choose expensive cheap =

if doExpensive then expensive else cheap

gl_FragColor = choose ExpensiveCalculation CheapCalculation

The arguments tochoose are only evaluated if necessary; that is, ifdoExpensive is true at compile

time, then onlyExpensiveCalculation will be performed. Otherwise, onlyCheapCalculation

will be performed. Lazy evaluation is necessary for optimalspecialized code generation.

Types

Following the conventions set by GLSL, we provide the following types:bool, int, float, and

vectors of 2 to 4 elements of each. (vec2 is a vector of two floats,vec3b is a vector of three bools,

vec4i is a vector of four integers, etc.) There are also three square, float matrix types:mat2, mat3,

andmat4. Texture samplers have typesampler1D, sampler2D, etc. just as in GLSL.

16

Arrays have type[t] wheret is the type of its elements. Since shading hardware does not yet

support variable-length arrays, the length of the array must be specified atconstant frequency. In

order to access the i-th element of an array, an array access is treated as a function and called with

parameteri.

In Renaissance, there are no implicit type conversions.2 + 2.0 is a type error, requiring a con-

structor conversion:float 2 + 2.0

Built-In Functions, Operators, and State

As with types, we provide access to all GLSL built-in functions, with the same names, types, and

overloads. Texture access is done as in GLSL, with the exception that sampler types may be called as

functions with the lookup coordinates as the parameter.

All of GLSL’s built-in infix operators are available in Renaissance, with the same precedence. Func-

tion calls have the highest precedence, but parentheses areavailable and operate as expected. A new

++ operator is defined as vector concatenation, replacing GLSL’s vector constructors. Given two floats,

concatenating them with++ returns a 2-element vector. For example,(vec3 1.2 3.4 5.6) ++ 7.8

evaluates tovec4 (1.2 3.4 5.6 7.8)

All GLSL state is exposed in Renaissance as expected.

Overloading and Swizzling

Renaissance supports what is known as ad-hoc polymorphism,or overloading, based on the number

and type of arguments. For example, the expressionsvec4 1.0 andvec4 1.0 1.0 1.0 1.0 are

equally valid and have the same result, since the first is an overloaded constructor that fills the vector

with its one argument. There is a built-inlength function which takes any vector of size 1 to 4 and

returns its length. Renaissance defines a special dot operator (.) (similar to the language Nice) that calls

the right hand side with the left hand side as its argument. This meanslength vec andvec.length

are equivalent. This has the nice property that vector swizzling (vec.xyz) can be defined entirely

within the standard library, although, for performance reasons, it is special-cased.

17

Composability

As graphics teams begin to replace the entire fixed function pipeline with their own shading al-

gorithms, the restriction that shaders must replace the entire pipeline becomes an increasing problem.

Moreover, it is nontrivial to write two independent pieces of the shading algorithms and combine them

into one shader at runtime, even if they are independent in definition. Some have solved this problem

with elaborate preprocessors that combine the pieces into one shader that does not do any redundant

computation. Valve’s Half-Life 2, for example, builds over1500 shaders as part of their build process

by combining pieces of them with a preprocessor.

As a consequence of the functional programming model and frequency inference, Renaissance

naturally supports composition, as demonstrated by the following example code:

constant bool useLightingModel1

lightModel1 = ... # calculations for light model 1

lightModel2 = ... # calculations for light model 2

gl_FragColor = if useLightingModel1 then lightModel1

else lightModel2

Since the variableuseLightingModel1 has constant frequency, it is evaluated at shader compila-

tion time. Thus, the shader is specialized based on its value, with no extra computation per fragment.

Abstraction Facilities

Traditionally a vertex program that applies skeletal animation bone transformations to each vertex

looks something like this:

uniform [mat4] bones

attribute vec4 boneIndices

attribute vec4 weights

v0 = weights.x * ((bones boneIndices.x) * gl_Vertex)

v1 = weights.y * ((bones boneIndices.y) * gl_Vertex)

18

v2 = weights.z * ((bones boneIndices.z) * gl_Vertex)

v3 = weights.w * ((bones boneIndices.w) * gl_Vertex)

vertex = v0 + v1 + v2 + v3

gl_Position = gl_ModelViewProjectionMatrix * vertex

This program has much duplicated logic and is hard-coded forthe number of bones applied to each

vertex. One improvement would be to use a for loop or iteration construct to iterate over the bone

references. This would reduce the duplicated logic, but compilers for these languages do not claim to

unroll loops and may even cause the shader to be virtualized onto the CPU if loops aren’t supported by

the underlying hardware. Given frequency inference and higher-order-functions, however:

constant bool enableBones

uniform [mat4] bones

attribute vec4 boneIndices

attribute vec4 weights

skinnedVertex =

sum [(weights i) * (bones (boneIndices i)) * gl_Vertex)

for i in (range 0 3)]

vertex = if enableBones then skinnedVertex else gl_Vertex

gl_Position = gl_ModelViewProjectionMatrix * vertex

The syntax[expr for var in list] is called a list comprehension. A new list is created by

evaluatingexpr on every item inlist. In this case, the new list contains weighted vertices, which

must be summed to get the result. The sum function takes a listand returns the result of adding all its

elements. Since the length of the list has constant frequency, it is automatically unrolled.

It may seem strange that the vectorweights is being called as a function, with an index as a

parameter. But, since the index hasconstant frequency,weights 0 is compiled intoweights.x,

weights 1 is compiled intoweights.y, etc...

19

This version of the shader provides a simple switch to enableand disable bone application at com-

pile time.

Runtime Description

Compiler Backend

As mentioned above, we are building Renaissance upon GLSL. It is a strong foundation for our

functional language. Also, several functional languages compile to C as it makes a very effective

portable assembly language. Nothing in the language itselfprevents other backends from being added

in the future, however.

Shaders have special output definitions that are the ones actually responsible for generating code.

If gl_Position is defined, for example, it must have typevec4 and frequency ofvertex or less. Its

evaluation becomes part of the vertex program. If it and all other vertex-frequency outputs are not

defined, a vertex program is not generated at all and the fixed function pipeline is used. If any other

vertex-frequency is defined,gl_Position must also be defined. (In GLSL, vertex programs must

output at least a position.)gl_FragColor has the same restriction forfragment-frequency outputs.

These output variables can also be assigned the special value undefined, which is equivalent to not

giving a definition at all. This is used in the following situation:

gl_FragColor = if enablePerPixelShading then getColor

else undefined

The reason the special valueundefined is necessary can be demonstrated by a shader that can

switch between per-vertex and per-fragment lighting. Whenvertex lighting is enabled, we may not

need a fragment program at all: the fixed function pipeline may do just fine. In that case, we want a

way to define whatgl_FragColor is, while providing a switch that specifies whether it shouldgenerate

an output or not.

Fig. 2.2 shows the standard OpenGL brick shader translated directly into Renaissance.

20

Future Work

While Renaissance satisfies our expectations, there are clearly areas that we feel we could improve

it. First, composition and specialization of shaders in oursystem requires that everything is written and

compiled in one file. A “linking” or “module” system would allow users to write independent concepts

by themselves and then combine them as needed. Similarly, wewould like to extend the concept of

functional graphics up to the level of multi-pass effects and state specifications. As Vertigo [7] shows

so eloquently, functional programming is a perfect fit for many concepts in computer graphics.

Our research was focused on implementing high-level optimizations such as specialization without

redundant code. We would like to apply Vertigo’s expressionrewriting system so that we can gener-

ate efficient code at the instruction level as well. Along the same lines, additional backends for the

assembly language shading languages are an obvious improvement.

Finally, since a functional language provides a clear, unambiguous specification of the dependen-

cies in the pipeline, implementing shader debugging and virtualization on top of Renaissance is a nice

opportunity.

Conclusion

As programmable graphics hardware becomes more prevalent and instruction and memory limita-

tions are lifted and removed, a next generation shading language will need to reduce the complexities

associated with transferring data and calculations from the host application all the way down to the

pixels on the screen.

This paper describes Renaissance, a shading language for modern programmable GPUs that, through

the benefits of functional programming, enables efficient and clear algorithm specifications across mul-

tiple stages of the graphics pipeline. Through a simple semantic model and frequency inference, natural

composability of shading “concepts” is possible, which existing languages make difficult at best. Ex-

tending this simple concept, we can imagine a programmable shading system with configurable state

that can be flipped on and off, just like the interface to the fixed function pipeline.

21

Acknowledgments

We would like to thank Conal Elliot for his work on Vertigo while at Microsoft Research – without

it we would not have gotten far. Thanks also goes to Simon Peyton-Jones at Microsoft Research for his

work on the Haskell language and for releasing his out-of-print book The Implementation of Functional

Programming Languages. Finally, Dusty Leary and his infectious love of functional programming

greatly influenced the design of the language.

22

Uniforms.

uniform vec3 LightPosition

uniform vec3 BrickColor

uniform vec3 MortarColor

uniform vec2 BrickSize

uniform vec2 BrickPct

Constants.

SpecularContribution = 0.3

DiffuseContribution = 1.0 - SpecularContribution

Transform.

gl_Position = ftransform

ecPosition = (gl_ModelViewMatrix * gl_Vertex).xyz

tnorm = normalize (gl_NormalMatrix * gl_Normal)

Lighting.

lightVec = normalize (LightPosition - ecPosition)

reflectVec = reflect (-lightVec) tnorm

viewVec = normalize (-ecPosition)

diffuse = max (dot lightVec viewVec) 0.0

spec = if (diffuse > 0.0) then s else 0.0

where s = pow (max (dot reflectVec viewVec) 0.0) 16.0

LightIntensity = DiffuseContribution * diffuse +

SpecularContribution * specular

Brick.

position = gl_Vertex.xy / BrickSize + (vec2 xoffset 0.0)

where xoffset = if fract (position.y * 0.5) > 0.5 then

0.5 else 0.0

useBrick = step (fract position) BrickPct

color = mix MortarColor BrickColor amount

where amount = useBrick.x * useBrick.y * LightIntensity

gl_FragColor should have

type vec4gl_FragColor = color ++ 1.0

Figure 2.2 Brick shader

23

3 THE IMPLEMENTATION OF A FUNCTIONAL SHADING LANGUAGE

A paper to be submitted toThe International Conference on Functional Programming

Chad Austin

Abstract

Renaissance is a functional programming language for developing programs that run directly on

real-time programmable graphics hardware. It provides a novel approach to solving the problem of ef-

ficient shader specialization by using frequency analysis and automatic lifting. We show the feasibility

of such a design by providing algorithms and techniques in the language’s implementation.

Introduction

The advent of programmable hardware is perhaps the most important real-time graphics hardware

innovation in the last five years. As programmable shading replaces operations traditionally done with

the fixed function pipeline and selected extensions, the lack of mechanisms to elegantly and efficiently

combine shading code, without resorting to preprocessors that run on the shader text, is a large barrier

to wide adoption of shaders.

We introduce a functional programming language, in the style of Haskell, Miranda, and Clean, for

implementing shading algorithms on modern, programmable,real-time graphics hardware. We discuss

previous systems for interfacing with programmable hardware and show why they don’t facilitate or-

thogonality. We discuss the implementation of Renaissancein detail and provide an example of efficient

specialization that isn’t straightforward in existing systems.

24

Related Work

This research draws mainly upon three other fields: previousshading languages, functional pro-

gramming, and staged computation.

Shading Languages

Graphics Pipeline as a Shading Language

Before graphics hardware allowed user-defined programs to replace the vertex and fragment pro-

cessing portions of the pipeline, some systems used multipass texture blending techniques available

on existing hardware to perform somewhat arbitrary shadingcalculations. The Quake 3 engine, for

example, provided a simple shader scripting language to control the number of passes, texture stages,

and rendering states. Peercy, Olano et al. discovered that astandard OpenGL 1.2 implementation, with

a handful of key extensions, could be treated as a general-purpose SIMD computer in their OpenGL

Shader work. [20] OpenGL Shader can support arbitrary shading, using multiple rendering passes.

This approach is not viable in the long term, as multipass algorithms depend on a very high memory

speed, and arithmetic unit clock speeds are increasing faster than memory.

RTSL

Stanford’s real time programmable shading system, RTSL [21], introduced the concept of compu-

tational frequency. They defined four frequencies at which computation can be performed: constant,

primitive group, vertex, and fragment. Constant computation is done at shader compile time and not

during the processing of geometry. Primitive group computation is done per batch of geometry, while

vertex and fragment computations are done per vertex and perfragment, respectively. RTSL has a

retargetable backend that can map vertex computation to either the CPU or early programmable vertex

hardware. Fragment computation is mapped to multi-pass OpenGL, as in OpenGL Shader above, or

early fragment processing hardware like NVIDIA’s registercombiners. Their shading language did

not logically separate the vertex and fragment stages as thecompiler was responsible for splitting the

work up among the various computational stages. Keywords allowed explicit specification of where

25

computation is to be done; for example, to easily compare twolighting algorithms, one per vertex and

the other per fragment.

Assembly Languages (ARBfp, ARBvp, DirectX shader models)

As fully programmable graphics hardware appeared, they exposed an assembly-language-like mech-

anism for programming the pipeline. The assembly language models a vector-based register machine

architecture. Although the instruction sets were limited at first, they were leaps and bounds more gen-

eral than the previous programmability options. Over time they have grown more advanced features

such as dynamic branching. They are more efficient than the multi-pass approaches above, because

they require much less memory bandwidth; instead, they depend on increasing ALU clock speeds. One

obvious disadvantage of assembly languages is that they aredifficult for people to write and under-

stand, as well as maintain, especially when programs get larger. Their principal advantage is that they

expose the capabilities of the hardware in a direct way and place most of the cost of optimization on

the application developers.

Cg / HLSL

Naturally, the next step beyond an assembly language is a high-level language that compiles to it.

Cg [16] and HLSL were created by NVIDIA and Microsoft, respectively, as C-like, high-level shading

languages. HLSL compiles to the Microsoft-defined DirectX vertex and pixel shader models, which

are loaded into the card at runtime. Cg, on the other hand, compiles to a variety of back ends and is

graphics API neutral. The most recent NVIDIA cards have support for Cg in the driver itself, requiring

no distinct compilation step. When referring to the language used by both Cg and HLSL, I will call

it simply Cg, even though they have diverged since. For the sake of compatibility with other shading

systems, and transparent access to the underlying hardware, Cg does very little work for the user. She

is required to specify how data is transferred into the shaders and which attribute channels map to what.

By design, Cg also does not virtualize any resources, if a feature is not available. One of Cg’s primary

goals is to be as close to the hardware as possible while maintaining a higher level of abstraction.

26

GLSL

While Cg and HLSL were being developed, 3DLabs and the OpenGLArchitecture Review Board

were designing a shading language for the future of OpenGL. The OpenGL Shading Language (GLSL

[22]) had different goals than Cg and HLSL. It was intended to become part ofthe OpenGL standard,

replacing the assembly languages. OpenGL implementers must have the shader compiler in the driver

itself, as opposed to an external process. This increases driver complexity, but means that applications

that use GLSL benefit from driver upgrades and compiler improvements for free. It is also a forward

thinking language design in that it requires all implementers to support things like conditionals and

loops even if they can’t do it in hardware. It requires virtualization of resources not visible to the

shader writer, such as temporary registers and instructioncount.

Sh

Sh [17] isn’t exactly a language, per se. It is a metaprogramming system on top of C++ designed

for building shaders. Sh is implemented through a set of custom C++ objects that build an internal

program representation when operations are applied to them. This program is compiled to an under-

lying shader that is run directly on the graphics card. The advantage of a metaprogramming system

such as this is that it has very tight integration with the host language. If the shader references a global

variable, and assignments are made to that global variable outside the definition of the shader, the data

is automatically passed in as a uniform. Also, it is natural to use the host language’s features in order to

specialize shaders. For example, if the shader contains a branch expression, two different shaders may

be generated, based on the outcome of the condition. Sh’s primary disadvantage is that it requires a

full C++ compiler to use a shader. Thus, shaders can’t easily be passed along with 3D models, limiting

their usefulness to people who aren’t programmers. That said, there are some uses for shaders where

a metaprogramming approach is ideal; such as implementation of custom graphics algorithms tightly

bound to the application.

27

Vertigo

Vertigo [7] is a metaprogramming system like Sh, but built ontop of Haskell instead of C++. The

interesting aspects of Vertigo are that it is a functional language and uses expression rewriting for op-

timization. Expression rewriting allows it to do an optimalsearch of expression space to reduce the

amount of computation necessary in a particular evaluation. A compelling example is that of vector

normalization. Vector normalization is a common operationin graphics programs. When writing a

procedure, there is a choice between accepting a normalizedvector or a potentially non-normalized

vector and then normalizing it explicitly. Since normalization is expensive, normalizing a vector twice

should be avoided. However, in a functional language it is possible to take advantage of referen-

tial transparency and expression rewriting to reduce the expressionnormalize (normalize v) to

normalize v. Once this optimization is available, there is no reason notto normalize a vector, if it

needs to be. Redundant normalize calls are optimized away. Vertigo shows how this is done in an

elegant and automatic way.

Staged Computation

The concepts of computational frequency and shader specialization have generalized analogs in

recent work in staged computation and partial evaluation. [23] It’s not obvious how staged computation

research – which is intended for efficient specialization of programs on one architecture – can be applied

to custom programmable hardware, but there are certainly similarities, not the least of which is that they

tend to be based on pure functional languages.

Functional Programming

A lot of Renaissance’s design depends on research in modern functional programming languages,

starting primarily with Miranda. [24] The algorithms in theimplementation owe much to the techniques

specified in The Implementation of Functional Programming Languages. [13]

28

Motivation and Contributions

Existing shading systems have generally been designed to provide a reasonably close representa-

tion of the underlying hardware. Since the underlying hardware requires full replacement of the vertex

and fragment stages of the pipeline, the orthogonality of the fixed function pipeline is lost. If any cus-

tomizable shading is desired, everything else must be implemented as well. Several people have built

preprocessors and ad hoc shader composition systems to alleviate this problem. Through frequency

analysis, Renaissance allows efficient shader specialization without a higher-level preprocessor.

Since existing languages don’t hide the distinction between the vertex and fragment processors,

the implementation of a particular shading algorithm requires the developer to explicitly mark which

calculations are performed on which stage of the pipeline. Our system allows this to be inferred from

the frequencies of the input in the calculations being performed. This is discussed in detail later.

The metaprogramming systems, Sh and Vertigo, have the disadvantage that they depend on a

host programming language, and thus cannot reasonably be implemented in graphics drivers or scene

graphs, for example. One of Renaissance’s goals is simplicity of implementation, so that it can be

implemented in or used from many languages and systems. Basing our computational theory on the

lambda calculus facilitates this. Compilation and evaluation is also discussed later.

The programmable graphics hardware found in modern graphics acceleration cards, is stateless.

That is, there is a set of inputs, a set of temporary registersin which to perform calculation, and a set of

outputs for passing data on to the next stage. Elements in a stream that are being processed have no way

to communicate with each other. We believe a functional programming model matches this hardware

better then C-like languages. For optimization purposes, shaders written in C-like languages are often

transformed into single-static-assignment form (similarto pure functional programs) anyway. If that’s

the case, why not just have a functional programming language in the first place? More importantly,

a functional language has a cognitive model such that no values can be modified, matching the human

mental model of the underlying hardware better.

Finally, if Renaissance aims to provide the backbone for implementing an orthogonal rendering

pipeline with shaders to replace the fixed function pipeline, selection of renderer state (and thus, speci-

fication of shader input values) must be as convenient asglEnable(GL_LIGHTING). The Renaissance

29

runtime system make specification of these values effortless.

In short, our primary contributions are as follows:

• The implementation of a pure functional programming language for programming graphics hard-

ware.

• Efficient shader specialization through partial specialization.

• Automated computational frequency inference for optimal partitioning of program execution to

four stages of the graphics pipeline.

• Simple implementation allowing for a wide variety of uses.

Shading Pipeline

An extremely simplified overview of the graphics pipeline can be split into four stages, roughly.

Application

The application configures the rendering state (current shader, lighting parameters, textures, mate-

rials, etc.) and pushes groups of triangles to the vertex processor.

Vertex processor

The vertex processor transforms, clips, performs vertex calculations, and begins rasterization. It

runs once per vertex.

Interpolators

Any given triangle can generate an arbitrary number of fragments, depending on its size on the

screen. The attributes passed from the vertex processor to the fragment processor must be linearly

interpolated across the triangle (perspectively correct of course). The interpolators perform this opera-

tion.

30

Fragment processor

The fragment processor performs any final shading calculations on the pixel before it is written into

the frame buffer and displayed on the screen. These include per pixel lighting calculations, depth buffer

tests, reading from textures, and alpha blending.

Language Overview

Introduction

In syntax and semantics, Renaissance looks and feels very similar to languages in the Haskell,

Miranda, and Clean family. For those familiar with functional languages, Renaissance is a strongly

typed, pure, non-strict language. For the other, it’s probably best to start with examples. Names can be

given definitions:

gross = 12 * 12

Functions over arguments are defined as such:

square x = x * x

Functions can be applied to arguments:

sumOfSquares x y z = square x + square y + square z

Certain definitions have special meaning – they are the outputs of a particular stage of the GPU.

For example, the special outputgl_Position refers to the vertex position generated by the vertex

processor.gl_FragColor is the color of the pixel that gets placed in the framebuffer.

Frequency

Because graphics hardware is split into stages, we borrow the concept of “computational frequency

from RTSL. We support four frequencies:constant, uniform, vertex, andfragment.

• Values ofconstant frequency are known at the time the shader is compiled into instructions

that actually run on the hardware.

31

• Values ofuniform frequency may be specified by the application per every batchof vertices.

• Values ofvertex frequency are given to the shader per vertex. These are generally attributes

such as the vertex normal, texture coordinates, and color.

• Values offragment frequency are given to the shader per fragment.

At first glance, the result of an operation applied to two values should have frequency equivalent

to the highest frequency of the values. Since the literal constants in2 + 2 haveconstant frequency,

they can be evaluated at compile time, to produce the literalvalue 4. (This is known as constant

folding in the traditional compiler literature. It also canbe thought of as partial evaluation in the staged

computation literature.) The generalized concept of frequency allows us to do the same thing for the

other stages of execution. Let’s say that a fragment stage output, namelygl_FragColor, depends on

the normal given to the vertex stage transformed into eye coordinates:

gl_FragColor = generateColor (normalize (gl_NormalMatrix * gl_Normal))

gl_NormalMatrixhasuniform frequency (it does not change per primitive group) andgl_Normal

hasvertex frequency. Given our algorithm above, normalizing the transformed normal should have

vertex frequency. But remember that there are interpolators between the vertex stage and the fragment

stage. A vertex normal can’t be referenced directly by the fragment stage – it can only reference the

output of the interpolator at that particular fragment. Notice specifically that it makes no difference if

gl_NormalMatrix * gl_Normal is calculated on the vertex or fragment stage of the pipelinebecause

the normal matrix does not change between primitives in a group. However, normalizing a vector on the

vertex processor, and then interpolating that, is different from interpolating the vector and normalizing

it on the fragment processor. Now we see that we can only lift computation from the fragment shader

to the vertex shader (that is, across the interpolators) if the operation is linear. Multiplication of a uni-

form matrix by a vector, addition of two vectors, multiplication or division by a constant, and several

other operations are linear and can be lifted to the vertex processor. The naive algorithm above works

properly for lifting anything from the vertex shader to the CPU, such as multiplication of uniforms,

however.

32

Types

Since this language is based on GLSL, all primitive types areborrowed directly. There are integers,

floating-point numbers, and booleans, as well as 2-, 3-, and 4-vectors of each. Three square matrix

types are provided: 2x2, 3x3, and 4x4. There are also six sampler types which cannot be manipulated

but are used to read from texture units.

Renaissance has two compound types: tuples and functions. Avalue of type(int, float) has

two elements, the first of which has typeint, and the secondfloat. A function that accepts an integer

and returns a float has type(int -> float). A function that accepts two integers and returns their

sum has type((int, int) -> int).

Ad Hoc Overloading

Types in the language are inferred entirely from context, not specified explicitly. Rather than us-

ing the Hindley-Milner type inference or class-based polymorphism [25] common in other functional

languages, Renaissance uses an ad hoc overloading system similar to C++ [3]. A particular source

level function definition actually refers to a template of functions, depending on the types of the argu-

ments. For example, given the definition of the functionsquare above,(square 0), (square 0.0),

(square (vec2 0.0 0.0)) are all valid, having types(int -> int), (float -> float), and

(vec2 -> vec2), respectively.

The reasons we chose this approach over the standard Hindley-Milner approach are twofold. First,

the most common language known in our target audience is C++. Thus, it makes sense to use C++’s

template and overloading model. Secondly, and most importantly, GLSL uses ad hoc overloading in

the definition of its standard functions and operators. The primary disadvantage of choosing an ad hoc

approach over the Hindley-Milner inference is that the types of arguments cannot be inferred directly

from their usage in a function. So, to pass a function into another function, it has to be explicitly

instantiated with its arguments, as in C++. We believe passing functions into other functions is a rare

enough operation for shader developers that this trade-off is acceptable.

33

Expressions

In an expression, there are four primary types of syntax elements: unary and binary operators,

function application, and conditional branches.

negativeNormal = -normal # Unary operator.

eight = 2 + 2 * 3 # Binary operators.

myLength v = v / sqrt (dot v v) # Function application.

lightingModel = if dot v1 v2 < 0.0 then model1 else model2 # Branch.

Function application has the highest precedence. The precedence of the other operators matches

the OpenGL shading language specification.

Inputs and Outputs

Shaders replace a section of the programmable graphics pipeline. They have a set of inputs that they

process and pass on to the next stage through a set of predefined outputs. If an output is not defined,

the next stage of the pipeline gets a default value.

The two required outputs aregl_Position andgl_FragColor. gl_Position represents the

transformed vertex after processing by the vertex pipeline. gl_FragColor is the color of the fragment

written to the framebuffer after fragment processing.

OpenGL defines a standard set of inputs:gl_Vertex, gl_Normal, gl_Color, texture coordinates,

lighting parameters, transformation matrices, etc. Additional inputs can be defined by the user through

three keywords: constant, uniform, and attribute.

• Constant inputs haveconstant frequency and cause a recompilation of the generated code when

they are changed. They are typically used to reconfigure the shading pipeline while retaining

efficient generated code.

• Uniform inputs do not cause shader recompilation but are used to configure parameters that

remain constant over a batch of primitives. Lighting parameters and transformation matrices are

typically uniforms. Uniform inputs haveuniform frequency.

34

• Attribute inputs become part of the vertex stream and are used to store any data that changes

often or is associated with a vertex. Common examples include tangent and binormal vectors,

temperature, weight, density, additional colors, etc. Attribute inputs haveattribute frequency.

Compiler Implementation

Parsing

Upon loading, a Renaissance shader is lexed and parsed into an abstract syntax tree (AST), using

standard parsing techniques. After parsing, the shader program is stored in a direct representation of

the syntax. TheProgram object contains a list of constants, uniforms, attributes,and definitions. A

Definition has a name and an expression tree, in which nodes correspond to elements of the source.

There are only two types of syntax nodes: values and functionapplications. The program:

uniform mat4 TransformMatrix

gl_Position = TransformMatrix * gl_Vertex

Builds a program structure with one uniform and one definition, defininggl_Position as in Fig-

ure 3.1.

Building the Lambda Graph

The compiler, given a program object, knows about the built-in output names, and thus “instan-

tiates” the definitions. This process of instantiation converts syntax nodes into nodes in the lambda

calculus, named concrete nodes in this implementation. While syntax nodes only have strings, con-

crete nodes actually represent objects in the language, andthus they have type and frequency. There

are six types of concrete nodes: function application, abstractions, arguments of abstractions, branches,

built-in functions (with strict call semantics), and values. Figure 3.2 contains a graphical representation

of the following program after instantiation into the lambda calculus.

foo a b = a + b

bar = 10

output = foo bar 36

35

Figure 3.1 Example program structure

When instantiating a function application, the types of thearguments are evaluated, and the correct

function is chosen based on those types. No explicit type coercion is performed. If no function accepts

the argument types, an error is raised. User defined functions have no type constraints, so the function

is chosen entirely on the number of arguments.

Lambda Reduction

Once the program is converted into the lambda calculus, it isevaluated using normal form reduction,

explained in detail in the lambda calculus and functional programming literature. In short, when the

top of the DAG is the application of an abstraction, the arguments are substituted into the abstraction’s

subtree. [13] Figure 3.3 shows the value ofoutput after one evaluation step.

As evaluation is done as part of compilation, a naive approach is suitable. As abstractions are

evaluated, another graph is built as the result of evaluation. This new graph represents the set of com-

putations that must be done to calculate the output, and contains only built-in operators and function

calls.

36

Figure 3.2 Example concrete node graph

The nodes in this graph are calledCodeNodes. There are only three types of code nodes: branches,

native function calls1, and references to names or constants. Figure 3.4 gives an exampleCodeNode

structure.

The generated, rooted, DAGs are inserted into a structure called the shade graph, which represents

the shader pipeline as a whole. It is not yet suitable for conversion into GLSL though. Some further

processing is necessary.

1Operators are considered functions that evaluate to a special syntax in the generated code.

Figure 3.3 output after application of foo

37

Figure 3.4 Example CodeNode DAG

Constant Evaluation

First, expressions with constant frequency should be evaluated and inserted back into the shade

graph tree. This step subsumes constant folding in traditional compilers. It also facilitates efficient spe-

cialization: branch code nodes where the condition has a constant frequency can be directly evaluated

and replaced with the true part or false part depending on thevalue of the condition. If nothing else de-

pends on the computation that was removed from the graph, it is never calculated in the generated code.

Another subtlety here is that the true part and false part canhave different frequencies. This means that

the computation that depends on a result of the branch may have a different frequency, depending on

the value of the condition. Figure 3.5 is an example of a constant boolean that enables texturing in the

shader.

GLSL Shader Generation

At this point the shade graph is converted into a data structure that is conducive to direct conversion

into GLSL code. The structure has a list of constants, uniforms, attributes, and varying. It also contains

a statement tree to represent things such as assignments, bracketed compound statements, and if state-

ments. The statement nodes may reference subgraphs in the evaluation DAG. For example, assignment

statements must reference the value they assign and branch statements must reference their condition.

38

Basic gouraud shading modulated with a texture if enabled

Shader inputs

constant bool texturing # enabled?

uniform mat4 colormatrix

uniform sampler2D texture

Output vertex position

gl_Position = ftransform

Output fragment color

transformedColor = colormatrix * gl_Color

white = vec4 1.0 1.0 1.0 1.0

texel = if texturing then (tex2d texture gl_TexCoord) else white

gl_FragColor = texel * transformedColor

Figure 3.5 Example compile-time switch

It would be possible to convert this structure directly intoGLSL that can be executed on the GPU, but

it’s certainly not as efficient as it could be, yet.

Lifting

Next, computational lifting is performed. In most cases, the earlier a computation is performed in

the graphics pipeline, the more efficient the pipeline as a whole is. Shaders are compiled much less

often than they are drawn, so constant inputs result in the most efficient code, especially if they are

used to select code paths in the shader.2 Each triangle (three vertices) can produce an arbitrary number

of fragments, so computation should be performed on the vertex processor, instead of the fragment

processor, if possible. As described above, not all computations can be lifted to the vertex processor:

only those that have vertex frequency and are linear and thuscan be lifted across the interpolator

units. The algorithm for lifting is pretty simple: while thefragment portions of the shader have liftable

computations, replace them with a reference to a varying, and define the varying in the vertex shader.

The lifting stage is done before optimization because lifting may generate common subexpressions in

the vertex program which then can be coalesced.

2Branching at runtime may not be supported in hardware at all,so not generating unnecessary branches is of critical
importance.

39

After constant evaluation converts the shade graph into theminimum number of calculations that

must be executed in the shader, computations in the fragmentstage that can be lifted across the inter-

polators (see above) to the vertex stage are converted into GLSL varying outputs in the vertex stage,

and referenced by name in the fragment stage. The algorithm is as follows:

find liftable computation in fragment shader:

in vertex shader:

add new varying to vertex

add new assignment statement setting that varying output to the expression

in fragment shader:

add new varying (of same, but arbitrary, name)

replace reference to computation with reference to varying name

repeat while there are more

A computation is liftable if it has certain linearity properties. Unary functions are linear ifc * f(x)

= f(c * x) andf(a) + f(b) = f(a + b). Binary functions are linear ifc * f(x, y) = f(c * x,

c * y) andf(a, b) + f(c, d) = f(a + c, b + d). Multiplication by itself is not always linear,

but it can be, depending on the frequencies of the results. For example, multiplication of two scalars

with vertex frequency is not liftable, but multiplication of a uniform scalar by an attribute scalar is

liftable, as the uniform is not interpolated.

Optimization

A side effect of the lifting process is that a liftable computation that is referenced on both the vertex

and fragment stages is now duplicated on the vertex side. Common subexpression elimination removes

this redundancy. This is the point in the process where otheroptimizations could be performed too.

Code Generation

Finally, the shader data structures are converted directlyinto strings which then can be uploaded to

the graphics card. This final phase is the most straightforward.

40

Runtime Implementation

The compiler is only one portion of the Renaissance system (albeit, an important one). A shading

system should provide a mechanism for 1) passing data into the system and 2) interfacing the compiled

shaders with the underlying graphics API. This section willdescribe that part of Renaissance. We will

describe interfacing compiled shaders with the graphics API first, because it influences decisions in the

data input system.

Compilation

A a Renaissance shader can generate many GLSL shaders, depending on the values of constant

inputs. Consider a scene of objects, all rendered with different shaders and shading parameters. Re-

compilation of the Renaissance shader every time an object is drawn with different parameters is un-

desirable. Clearly, the compiled shader objects should be cached, along with the values of the constant

inputs used to generate those objects.

In more detail, the process works like this:

• When an OpenGL program loads a shader, memory is allocated for the values of all the constant

inputs.

• Before an object is drawn, the values of constants are set andthe shader is bound as the current

shader on the graphics device.

• In the shader’s bind() call, if this set of constants has already generated a GLSL shader, that one

is used. Otherwise, the shader is compiled with the new constants.

The code looks something like this:

ren::Shader shader("shader.rs"); // Loads the shader.

ren::Bool useVertexLighting(shader, "useVertexLighting"); // Defaults to false.

shader.bind(); // Compiles for the first time.

drawObject();

41

useVertexLighting = true;

shader.bind(); // Compiles again, with vertex lighting.

drawAnotherObject();

Data Input

There are three types of input that must be specified in a Renaissance shader: constants, uniforms,

and attributes. Constants were described above. The setting of uniforms works in much the same

way. If a uniform changes between objects, however, the shader does not need to be recompiled. The

uniform’s new value must be uploaded to the graphics card before the object is drawn, though. The

shader object also maintains a registry of current uniform values so that it knows which values have

changed, and thus, which to upload to the card.

Constants and uniforms are largely abstracted away. The user of Renaissance never has to use

graphics API calls directly to set or query them. More importantly, the Renaissance input types are

much more convenient to use than the graphics API calls. Attributes are different story, however. Since

attributes are more tightly bound to the vertex specification mechanism of OpenGL, Renaissance can

only provide a mechanism to get the GLSL attribute ID, which the program can then use directly

when specifying attribute values or arrays. Using the same approach for attributes as for constants and

uniforms would be vastly inefficient.

Future Work

As our research has merely focused on high-level optimizations – such as compiling away unneeded

code – we have ignored most low-level optimizations. There are several obvious improvements that can

be made to the code generator. It would also be interesting toadd expression rewriting, such as that in

Vertigo. Support for additional backends, such as DirectX HLSL, is another obvious area Renaissance

could be improved.

One of the primary goals of Renaissance is to provide a foundation for creating shaders that can

flip functionality on and off. A good way to test the system would be to implement a sizable portion

42

of the fixed function pipeline as a Renaissance shader. This would also provide the opportunity to do

comprehensive performance comparisons between various configurations of the fixed function pipeline

and the equivalent (minimal) shader, as well as testing the performance of shader compilation in Re-

naissance itself. It would also provide a basis for switching entire programs to using shaders all of the

time, rather than switching in and out of the fixed function pipeline. In the long run, we could envision

GPUs as being extremely efficient and specialized vertex processors that only execute the code given

to them. Shading logic would be entirely specified in custom shaders.

As shaders grow, we expect shader developers will want to split them into reusable components,

each component representing one concept. For example, a module for doing varying forms of lighting

calculations could be shared across multiple shaders and projects.

Debugging shaders can be very difficult because the compilation and evaluation processes are so

opaque. We envision a shader debugging mode and tool where intermediate results can be viewed,

perhaps by selecting temporary evaluations and rendering them to temporary buffers.

Finally, this project was guided largely by the belief that afunctional shading model is a better

cognitive model for shading in computer graphics than a C-like language is. This assumption must be

tested in a usability study for it to be considered valid.

Conclusion

We’ve shown the design and implementation of a functional shading language. Renaissance is in-

tended to provide a framework for maintaining the orthogonality of concepts in shading calculations.

By basing the language on the syntax and semantics of pure functional languages and adding the con-

cept of computational frequency, we provide this functionality with implementation simplicity. We also

show the algorithms that demonstrate that this approach is feasible and effective, perhaps even more

efficient than a language based on C.

43

4 A HUMAN FACTORS ANALYSIS OF A FUNCTIONAL SHADING LANGUAGE

A paper to be submitted toCommunications of the ACM

Chad Austin

Abstract

Renaissance is a functional programming language for specifying computation to be performed on

programmable graphics hardware, addressing some major problems in existing systems. Additionally,

it was designed with a focus on usability. This paper provides an analysis of Renaissance, not from

a technical perspective, but from a human factors one. It examines Renaissance using the cognitive

dimensions framework and proposes a usability study.

Introduction

In the last half-decade, computer graphics hardware has grown the capability for almost arbitrary

computation at the vertex and fragment levels. This capability enables a slew of new surface and

lighting effects.

In the very early days of programmable shading, everything had to be programmed directly in an

assembly language. Collections of simple operations were performed on registers of floating point

4-vectors, then written to outputs. Assembly languages have never been designed for writability and

readability, but they got the job done for a while. As more andmore effort went into the development

of shaders, high-level languages (drawing from experiencein shading from the offline rendering world)

were developed. These languages are a vast improvement in a variety of ways, but do not go the entire

44

way towards making shader development realistic as a complete replacement for the fixed function

pipeline. [reference first paper]

We have developed Renaissance to address two problems: first, to provide a framework that makes

it easy to combine shading ideas without building a complicated preprocessor on top of existing systems

and, second, to attend to build a system that is better than existing ones in terms of cognitive load and

usability.

In this paper, we provide an analysis of the Renaissance shading language in the context of human

factors. We briefly discuss the system’s intended audience.We then utilize a heuristic framework, the

cognitive dimensions, to provide a “broad brush” analysis of the language and system. Finally, we

design a user study to qualitatively measure the effectiveness of the system.

Related Work

Two areas have primarily led up to this research: realtime computer graphics shading and the

psychology of programming. This paper primarily focuses onthe second, but we will briefly discuss

the first for background.

By far the most popular shading language in the off-line shading world is Pixar’s RenderMan.

RenderMan looks similar to C and programs that describe the characteristics of lights and materials are

written in it. RenderMan has had much influence on the design of real-time languages. As mentioned

above, the real-time shading languages have evolved away from assembly languages to higher-level

languages commonly based on C, including HLSL, GLSL [22], and Cg [16]. Cg has recently grown

“interfaces”, based loosely on Java, that begin to address the problem Renaissance solves, but not in

a satisfactory way. There are also metaprogramming systems, such as Vertigo and Sh, that utilize a

host language to define the shaders. These are not suitable for systems where the shaders should be

considered part of the 3D model file on disk. (The shader is as much a description of the appearance as

the textures are.)

Psychology of programming has been an active area of research since the 1970s [19, 26]. The Psy-

chology of Programming SIG was established in 1987 to coordinate research in the areas of cognitive

psychology in software development as a whole. Recently however there has been an increased interest

45

in the psychology of programming in the mainstream. Microsoft applies a heuristic analysis, called the

cognitive dimensions (CDs), to their C# and .NET development tools [5, 4]. The cognitive dimensions

are a set of mostly orthogonal axes in which a system can be evaluated. They are not intended to pro-

vide a rigorous analysis, but instead give the designer a rough idea of some of the human factors issues

inherent in the system. From there, the designer can come up with potential tests and changes that will

improve the system.

Renaissance consists of two primary pieces: the shading language itself and a runtime system that

hooks the shaders into the underlying graphics API, such as OpenGL, so that they can actually be used.

We will often discuss them together, since we took a holisticview when designing them. Either part

would not be terribly useful on its own.

Approach

Analyzing a programming language in the context of human factors on multiple axes can be diffi-

cult, especially when the language isn’t designed for general-purpose programming, but also depends

on a great deal of specific knowledge – such as computer graphics, linear algebra, and the physics of

light. We do not pretend to know the best way to evaluate the system, and we certainly do not assume

that our design is necessarily better than existing systems(although we certainly hope so!). What we

really want to know is how to test our system in comparison with existing ones and discover whether

the design we created is actually better for some, if not most, users. We would also like to learn which

areas of the system could use improvement.

The first thing we will do is a traditional user analysis, to get a rough idea of their relationship with

the software. Then we will dig into the cognitive dimensionsand apply them if possible. Note that all

of the dimensions are not equally valuable in this analysis.Some might not even apply. But overall

they do a good job of capturing several important ideas. Finally, we design a potential usability study

to test the effectiveness of the system.

46

User Analysis

Using the persona definition technique from interaction design [6], we have defined three primary

user personas. Alan Cooper claims that reasoning about design is made more natural and effective when

designing in the context of realistic (although hypothetical) people instead of differentiating “experts”

and “beginners”. Our three personas follow.

Aaron is an experienced graphics programmer. Having workedon several modern PC games, he’s

intimate with the operation of programmable graphics hardware and how to use it to efficiently imple-

ment many shading algorithms. He has traditionally developed the shaders in an assembly language,

but recently has been using a high-level language (still checking the generated code, of course!) be-

cause every frame per second counts. He reads every major computer graphics research paper and has

substantial linear algebra experience. It is very unlikelythat Aaron will be receptive to a language that

hides the generated code. For shader specialization, he hasimplemented a preprocessor that runs at

compile time and generates all of the different shaders he needs for various configurations.

Steven has been working for a CAD/engineering company for ten years. He has developed and

maintained several key pieces of the graphics rendering system in their software over the years and

is very familiar with rendering large amounts of geometry, levels of detail, and efficient culling algo-

rithms. He understands some of the concepts in programmableshading but has not had the need or

desire to sit down and play with shaders.

Jennifer is a student in computer science with a minor in art and is taking an introductory course in

computer graphics. She has written a few programs that render a shaded and lit model, but has only used

the fixed function pipeline and doesn’t understand all of thedetails of how the fixed function pipeline

works. She knows that when she positions and colors lights properly, they affect the appearance of

the scene. She would like to learn how to write shaders so thatshe can implement her own lights and

material properties.

These three hypothetical users represent the audience we are targeting with Renaissance.

47

Cognitive Dimensions

The cognitive dimensions [8] are a popular heuristic framework initially created by Thomas Green

that are designed for quickly and easily evaluating a system. There are 13 dimensions, each representing

an aspect of the system and has an impact on the ability of users to work with it. They allow the designer

to get a general feel for the characteristics of the system before running expensive usability tests. Here,

we use them to help design a usability study tasks in the thirdsection of the paper.

The cognitive dimensions take a complete view of a system. The notation is the textual or graphical

view into structure. The environment is the way the notationis manipulated. The system is defined as

both the notation and the environment.

For each of the dimensions, we will briefly discuss what it is and then go into how it applies to

Renaissance. For more detailed description of the dimensions, see the literature. [9]

Abstraction Gradient

For clarity, let us defineabstraction as a conceptual object, a group of elements treated as one. Ina

traditional programming language, a function is an abstraction over a list of statements or operations.

A class in OOP is an abstraction for a data structure and a set of related operations. The abstraction

gradient represents whether users are required to learn abstractions before effectively using the system

and whether they are allowed to use abstractions if they wantto. At first glance, programming systems

can be defined as abstraction-hating, abstraction-tolerant, or abstraction-hungry.

We consider Renaissance an abstraction tolerant system. The two main abstractions in our language

are functions and types. It is never required to define functions to write a useful shader. The simplest

shader looks like this:

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex

reading, “Define the output position as the multiplication of the model-view-projection matrix and

the input vertex”. However, it is certainly possible to define new functions if necessary. In the current

state of the implementation, it is not possible to define usertypes, but we do intend to implement that

in the future.

48

One potential sticking point is Renaissance’s concept of frequency. Frequency can be thought of as

an abstraction over the shading stages in the graphics pipeline. For most tasks, Renaissance’s frequency

analysis provides performance equal to or better than making the calculations explicit for each stage

of the pipeline. However, when optimizing a shader, the implicit nature of frequency and frequency

analysis may hide the impact of calculations done in the shader on the generated code’s performance.

The runtime support, since it is interfaced through C++, has a similar abstraction gradient to C++.

That is, the creation of new abstractions is never necessary, but is possible if needed.

Closeness of Mapping

Closeness of mapping represents the similarity of the structures in the problem domain to the struc-

tures in the program. In an ideal language, concepts and the problem domain would have a one-to-one

mapping with structures in the program. This would prevent the user from having to break goals down

into programming sub-tasks in order to solve the problem.

We feel Renaissance has a very high closeness of mapping, especially compared to existing sys-

tems. The lack of explicit types and frequency allows the user to specify just the computations required

for the desired effect. There is no extraneous syntax. Built-in inputs and outputs are made implicit

for this reason as well. The syntax of expressions in the language also comes very close to traditional

mathematical notation. Unlike C-like languages, functions with return types and parameter lists do not

have to be notated. Temporary variables and order of calculation are also made implicit in Renaissance,

under the premise that the compiler can do a better job than a human anyway.

Since every Renaissance object is constant once calculated1, it does not have the problem where

users may think the value of global variables will persist between multiple shader executions on ele-

ments in the processing stream. This provides a closeness between the syntax, the semantic model of

the shader, and the model of the shading pipeline as a whole.

In the above situations we have considered the problem domain to be that of shading computation

and effects. If the problem domain is considered to be the actual instructions executed by the hardware

(for example, when optimizing or benchmarking code), Renaissance has a low closeness of mapping

1This is called referential transparency in the functional programming literature and means that a function applied to the
same arguments will always have the same value, no matter when it is evaluated.

49

rating. Minor changes in syntax, or even the values of constant input, can effect huge changes in the

generated code. The algorithm for splitting computation onto the different stages is neither obvious nor

made explicit in the notation.

Consistency

Consistency refers to the “guessability” of a system. Givenknowledge of some of the program

structure, how much of the rest can be guessed? Note that simplicity brings about consistency simply

because there aren’t that many types of definitions, expressions, etc. For this reason, Renaissance

is consistent with itself. Examples follow. Uniform and constant inputs are specified with the same

objects in the runtime library. Also, the input specification objects have the same name as the types that

they define as well as behaving like native types in both Renaissance and C++ (bool can be implicitly

converted to and from Bool, etc.).

Renaissance snippet

uniform bool booleanUniform

// C++ snippet

ren::Bool booleanUniform(program, "booleanUniform");

booleanUniform = true;

Another area we improved consistency over traditional approaches is with swizzles. Swizzles are

a window into the operation of the underlying graphics hardware that has followed into high-level

shading languages; the elements of a vector can be arbitrarily reordered or ignored.vec.wxyz is the

same as(vec4 vec.w vec.x vec.y vec.z). Rather than treating swizzles as special syntax, we

treat them as normal functions ((wxyz vec) is valid) and define the syntaxA.B to be equivalent to

(B A), that is, apply the function B to A. This has an advantageous consequence. In object-oriented

languages, fields are accessed with dot notation: vec.length is the length of the vector. In Renaissance,

that syntax is also valid; it calls the length function on thevector.

Another area of consistency involves function definition and application. Since we based the syntax

of this language on the family of languages derived from Miranda, functions look like this:

50

sumOf a b c = a + b + c

theResult = sumOf 15 25 35

Notice that the function definitionsumOf a b c and the function applicationsumOf 15 25 35

have the same syntax.

Renaissance is also consistent with the language it is builton top of, the OpenGL shading language

(GLSL). All built-in functions, inputs, outputs, and typesare taken directly from GLSL.

Diffuseness - Terseness

A notation with high diffuseness simply uses a larger amount of notation or screen real-estate to

express its meaning. In other languages (APL, for example),symbols carry a lot of meaning, by them-

selves, so fewer are needed to express a concept. Renaissance is also very terse: types and frequencies

are implicit, and parentheses and commas are not necessary in function calls. It also does not suffer

from LISP’s paren-hell because most operators are used in infix notation and have the same precedence

as in GLSL.

Often, terseness is a positive thing, as it implies the programmer needs to keep a smaller amount of

text in memory and on the screen. However, we feel Renaissance might be too terse for users. It might

not be easy for them to quickly scan text and understand its meaning. Hopefully, a user study will shed

some light on this issue.

Error-proneness

It is difficult to discuss the issue of error proneness when a system is new and has only a few users.

That said, we have come up with a set of potential sources of errors, in no particular order:

In the Renaissance language, if an output is not defined, it isgiven a default or unspecified value.

This means that if an output variable is misspelled, the calculation won’t even be performed and the

output will have an unexpected value. Since all built-in outputs begin with the prefixgl_, it is pos-

sible to make it an error to provide custom definitions that begin with gl_. This would make output

misspellings an error.

51

Renaissance functions are defined without explicitly restricting the types of the arguments. The

type of the result and the operations performed depends on the types of the arguments given. Take the

following example.

add a b = a + b

Theadd function will work as expected if called with two integers ortwo floats. If called with an

integer and a float, however, an error message is generated from inside the add function, since a floating

point number and an integer can’t be added directly. In this situation, the problem pretty obvious, but

as a shader grows, it won’t be as obvious where the error is coming from. One way to address this

would be to add a type constraint system so that if a function only works with patterns of certain types,

that restriction can be expressed directly in the notation,improving the error messages.

An area of concern is that we expect most users of this system to be very familiar with C, C++,

or similar languages. In those languages function calls take the formfunctionOver(a, b, c). In

Renaissance, they take the form(functionOver a b c). functionOver (a b c)may seem to be

equivalent at first glance, but it has a very different meaning: ApplyfunctionOver to the result of

applying functiona to b andc.

These error situations are certainly not an exhaustive list. The usability study should bring up ones

we haven’t thought of, as well as showing the actual impact ofthe ones suggested.

Hard Mental Operations

Hard mental operations refer to notational constructs that, when two or three are combined, vastly

increase the difficulty of understanding, especially compared to the individual constructs. We have so

much experience with the system that we do not feel qualified to decide which operations are especially

hard at the notational level. A larger user base and the usability study should enlighten us on this.

Hidden Dependencies

Hidden dependencies are relationships between objects in the system that are implicit and difficult

to uncover. If two functions call one to do some common work, changing that function may break one or

52

both of the callers. This is a hidden dependency. The cognitive dimensions are meant to be evaluated

in terms of both the notation and the environment used to manipulate that notation. Given that this

research is on the language by itself, no special editor has been developed. When using a standard text

editor, the relationship from callees to callers is a hiddendependency. It would be possible to develop

an editor that would make it easy to find these back-references.

Another hidden dependency is between the notation and the generated code, when compiled with

a certain set of constant values. A primary feature of Renaissance is that branches on constant values

can be used to specialize a shader for certain operations, only generating code for the calculations that

must be performed. In a sufficiently large shader with enough of these compile-time switches, there is

no easy way to tell which functions actually generate code.

Finally, functions in Renaissance are actually syntactic templates for a set of possible functions.

This means that if a function is called twice with arguments of different type, it will actually generate

two functions – one specialized for each type. When looking deep inside a function, the types and

values of the arguments are not directly visible. This may impair understanding.

Premature Commitment

When outlining a document in a notebook with a pen, you need tomake sure to leave enough

room for the content between the headings. This is an exampleof premature commitment, where the

user is required to make decisions when not ready. A problem inherent in all programmable shading

systems is that when shaders are used at all, they must replace the entirety of the fixed function pipeline.

Renaissance does not address this problem. Otherwise, the only decision required of the user is what

to output to the required vertex and fragment outputs, glPosition and glFragColor. Beyond that,

everything can be developed incrementally.

Progressive Evaluation

Progressive evaluation refers to the ability of users to evaluate their progress frequently. We feel

Renaissance allows for iterative changes at least as much astraditional programming languages. Two

things must be true before a shader can be tested. The required outputs must be defined and the program

53

must be syntactically correct.

This is an area where Renaissance, GLSL, HLSL, and Cg have an advantage over metaprogram-

ming systems. Since shaders can be directly loaded from files, iteration time is reduced.

Role-Expressiveness

Role expressiveness is related to diffuseness and terseness above. It refers to the self-describability

of the notation. When a user looks at a particular piece of a shader, a high degree of role expressiveness

means that the user will rapidly discover what that piece does or is for. Role expressiveness can be

improved through well named identifiers, comments, and standard idioms. Renaissance supports these

secondary notations.

One part of the syntax we think might cause problems is the notation for applying functions to

arguments. In traditional mathematical notation,f(x, sin(y)) + 10 would be the representation

for “f applied to x and the sine of y, added to 10”. Since Renaissance uses Miranda’s syntax, the above

could be writtenf x (sin y) + 10 which seems to hide the order of evaluation. Users may tend to

explicitly insert parentheses to make the the order more explicit: (f x (sin y)) + 10

Secondary Notation

Secondary notation encompasses all of the ways a programmercan encode meaning in the program,

beyond that which is required for correct execution. These include identifier names, comments, use of

whitespace, and grouping of similar structures. Renaissance allows most of these, but it uses whitespace

as end-of-line punctuation so arbitrary use of whitespace is restricted.

Viscosity

Viscosity refers to the amount of work required to make a small conceptual change. Renaming a

class in C++ is an example of something that has very high viscosity – the header file must be changed

(and even renamed), and the name must be changed in the corresponding source file and anywhere the

class is used. The notation has high viscosity, but a refactoring browser may make this operation much

simpler, reducing its viscosity. (Remember: System= Notation+ Environment)

54

Renaissance is such a small and experimental system that we don’t see any highly viscous areas.

One thing that requires multiple changes would be changing the name of an input. The name would

have be changed in the shader, in the code that referenced that name, and perhaps the name of the C++

input objects would be updated. Metaprogramming systems have an advantage here because inputs are

tied directly to the host language – updating and referencing the shader inputs is more direct.

Visibility and Juxtaposability

A system with low visibility makes it cognitively difficult to bring related structures into view.

Juxtaposability refers to the ability to view objects side-by-side. These dimensions primarily focus on

the editing environment. Since a Renaissance shader is (in the current implementation) entirely in one

file, visibility and juxtaposability depend on the text editor used. This dimension would be much more

relevant for a specialized shader editor.

Design of a User Study

Now that the CDs have given us a look at some of the cognitive aspects of the system, we present

a usability study to begin to explore these issues. We have two goals with this study: 1) perform a

comparison between Renaissance and an existing, standard shading system, GLSL, and 2) gain qual-

itative information about the effectiveness of our design. We are not necessarily interestedin specific

quantitative results – they would be too specific and could hide the overall value of the system. The

forest for the trees, so to speak.

Subject Selection

Ideally, we would like to test Renaissance with subjects whoare at least moderately familiar with

computer graphics, but do not have much shading language experience. If possible, we would like a

sufficiently large group to cover the three roles we have defined above. Since this is such a specialized

audience, we actually expect to perform the test on people who have moderate to extensive graphics

experience, even if they’ve used existing shading languages.

55

Format

We will split the group at random into two. One will be using GLSL and the other Renaissance

for the tasks below. The first thing we’ll do is administer a questionnaire to discover the background

and previous experience of the individual participants. Then we will provide a classroom-type lecture

to make sure everyone understands the shading pipeline and how data flows through it. There are three

things we must make clear about shaders in general:

• How vertices get put into the pipeline by the application.

• What the fixed function pipeline does, and how it can be replaced by programmable shaders.

• How resulting fragments get written to the screen.

Since Renaissance and GLSL have the same data types and built-in functions, we then must discuss

them:

• Scalars, vectors, and matrices

• The functions and operators in the language.

• Provided inputs and outputs.

This educational session is given after the questionnaire so as to avoid affecting the results. It also

mitigates the effect of the subject’s previous experience on the test.

Tasks

The test itself consists of five tasks. They are designed to build an understanding in a linear order.

The tasks happen sequentially, in one session, expected to last about two hours. The subject sits at a

computer while the administrator watches, takes notes, andprovides assistance if necessary. A “cheat

sheet” and reference documentation are available for both the GLSL group and the Renaissance group.

56

Task 1

The first task is designed to get the subject familiar with writing Renaissance shaders. The instruc-

tions are “Write a shader that writes a vertex transformed bythe projection and model-view matrices

to the output position, and writes the color white to the output color.” The result in Renaissance should

look something like:

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex

gl_FragColor = vec4 1.0 1.0 1.0 1.0

The equivalent in GLSL:

// simple.vert

void main() {

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

// simple.frag

void main() {

gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);

}

The subject is given a program that loads the shader and drawsa teapot with it.

Task 2

The second task is the other half of the first one: the subject develops the parts of the program that

must load and execute the shader. A program skeleton is provided that initializes OpenGL, handles the

window, and other tasks unrelated to the usability study. The subject is required to load the shader,

check for errors, and bind it to GL.

The first two tasks are primarily intended to judge the initial overhead required in using Renais-

sance. Can understanding at first impression be improved by reorganizing documentation? Renaming

some of the objects in Renaissance? How long does it take to get up and running compared with GLSL?

57

Task 3

Task #3 concerns itself with the effort involved in a relatively simple and straightforward change

to the shader: adding an input uniform. The task instructions are “Add an input uniform to the shader,

and set the output color to the value of this uniform. Then vary the color in the program to verify that

it works.” This task has two components: adding the uniform to the shader itself and setting its value

from the program. The first should be very straightforward. We expect the second to be significantly

easier in Renaissance than GLSL, simply because GLSL is a C++ API that is intended to look familiar.

Task 4

The fourth task takes advantage of a primary Renaissance feature: automatically lifting computa-

tion from the fragment shader to the vertex shader. We want totest whether the unified vertex-fragment

shader model of Renaissance makes cross-stage calculations such as lighting substantially easier. The

task is to add a new set of uniforms representing a light and perform a per-fragment lighting model

in the shader. The subject is given the required parameters and the mathematical equations needed to

implement the light model and is expected to develop a shaderto properly shade an object.

The GLSL group, due to the separation of fragment and vertex shaders, have two possible imple-

mentations. They may perform all of the computation in the fragment shader at reduced performance

but increased readability. More experienced users are likely to automatically perform vertex-dependent

calculations on the vertex pipeline and pipe them through varyings, even though this is more complex,

time-consuming, and prone to error.

An area of interest here is whether GLSL users have trouble dealing with the vertex-fragment

separation or if it comes naturally. It’s also possible thatthey will try to put too much computation in

the vertex stage, attempting to interpolate the results of non-linear calculations.

Task 5

The fifth and final task focuses on the compile-time frequencyanalysis. Since GLSL has no analog

of Renaissance’s constant frequency calculation, besidesa preprocessor on top of the source text, which

would take substantial effort to implement, this task is only performed with the Renaissance subject

58

group. The goal is to implement one shader with two shading algorithms and a compile-time switch to

select which one to use. Aconstant bool selector input will have to be added andgl_FragColor

must be defined asif selector then algorithm1 else algorithm2. We are interested in three

things:

• Does it make sense to use the same data input mechanism for both constants and uniforms?

• Does the user understand that the shader is recompiled when aconstant is changed?

• Does the user understand that the branch statement is not actually executed in the instructions

sent to the hardware?

Comments

It is important to remember that this usability study is qualitative – it is not intended to show

statistically significant differences. Instead, we intend for it to uncover future areas ofinvestigation.

That said, we believe several important results would be obtained.

Future Work

The next step is obvious: The usability study must be performed, the results gathered and ana-

lyzed, and Renaissance changed or clarified in response. Beyond that, since Renaissance is such a

simple functional language and GLSL is such a simple imperative language, shaders could be used as

a reasonable basis for quantitative, statistically significant comparisons of imperative and functional

programming in general.

Conclusion

We have shown a preliminary human factors analysis of the shading language design we have

created. The cognitive dimensions have allowed us to paint ahigh-level picture of the impact of our

system on human behavior and uncovered areas for future research and investigation. We then presented

a design for a usability study to test some of our assumptionsand decisions. The study is intended to

lead into specific follow-on studies measuring the effectiveness of specific other aspects of the system.

59

Based on our initial observations, Renaissance’s usability looks favorable compared to other sys-

tem, primarily because it handles the work of splitting whatthe shader developer writes efficiently

onto the different processors. Since it also addresses the major problemof nonorthogonality in existing

shading systems, we have hopes that it or a similar design will become the primary way people develop

real-time shaders.

60

5 GENERAL CONCLUSIONS

General Discussion

Chapter 2, the first paper, introduced the design of a functional shading language that provides

an elegant design for addressing the problems of shader non-orthogonality and automatic lifting of

computation onto previous shader stages. The second paper shows that the design is feasible and

provide specific algorithms for implementation. Finally, the third paper evaluates the language with a

human factors approach.

By basing Renaissance on the lambda calculus and a form of staged computation, we have de-

signed a language that has syntax and semantics straightforward enough to address computation at all

four stages of graphics hardware. This method enables efficient shader specialization without any pre-

processors or additional syntax. Additionally, we believeit has the benefit of being easier to use than

existing shading systems.

Recommendations for Future Research

In the future, we would like to see this system or a similar oneprovide the foundation for shading

on graphics hardware. We can envision a time when graphics hardware evolves into very fast, parallel

vector processors that don’t have any silicon dedicated to specific graphics operations. That logic

would be provided by a shader in software which could be customized by arbitrary applications. In

some sense, this is possible today, but there is no way to tellOpenGL to use a different lighting model

or to use per-pixel shading without writing a shader for the entire pipeline. As a proof of concept, we

would like to develop a shader for the majority of the fixed-function pipeline in Renaissance.

As we are in control of the software used to generate the instructions in the shading pipeline,

61

there are opportunities in shader debugging tools. It wouldbe possible to build a debugger on top of

Renaissance that interactively renders temporary resultsto the framebuffer. Something like this will

become increasingly important as shaders grow in complexity, especially if we have the bulk of the

fixed-function pipeline implemented in Renaissance.

There are obviously several improvements that could be doneto the code generation portion. One

interesting aspect of optimization is addressing the tension between temporary storage and number of

instructions. There is also a restricted number of interpolator units, so an algorithm to efficiently stay

within the allowed number would be important.

Since human factors were a concern throughout the project’sdesign, we would like to validate our

decisions. Chapter four of this thesis presents a design fora usability study. Once it is performed,

additional insights into the usability of Renaissance should guide further design and refinements.

62

BIBLIOGRAPHY

[1] Dave Baumann. Ati multi-threading patent - for wgf2.0 and xenon graphics? Beyond 3D

(www.beyond3d.com), 2005.

[2] David Blythe. Windows graphics foundation. Presentation at WinHEC 2004, 2004.

[3] Luca Cardelli and Peter Wegner. On understanding types,data abstraction, and polymorphism.

ACM Computing Surveys, 17(4):471–522, 1985.

[4] Steven Clarke. Evaluating a new programming language. In G Kadoda (Ed), Proceedings of the

thirteenth Annual Meeting of the Psychology of Programming Interest Group, pages 275–289,

April 2001.

[5] Steven Clarke. Api usability and the cognitive dimensions framework, 2003.

http://blogs.gotdotnet.com/stevencl/PermaLink.aspx/ae9f669d-09df-4bc7-b882-ea8361cdcc30.

[6] Alan Cooper.About face 2.0 the essentials of interaction design. Wiley, 2003.

[7] Conal Elliott. Programming graphics processors functionally. InProceedings of the 2004 Haskell

Workshop, 2004. http://conal.net/papers/Vertigo/.

[8] T. R. G. Green and Marian Petre. Usability analysis of visual programming environments: A

’cognitive dimensions’ framework.Journal of Visual Languages and Computing, 7(2):131–174,

1996.

[9] Thomas Green and Alan Blackwell. Cognitive dimensions of notations resource site.

http://www.cl.cam.ac.uk/ afb21/CognitiveDimensions/.

63

[10] Pat Hanrahan and Jim Lawson. A language for shading and lighting calculations. InSIGGRAPH

’90: Proceedings of the 17th annual conference on Computer graphics and interactive techniques,

pages 289–298, New York, NY, USA, 1990. ACM Press.

[11] M. Harris, G. Coombe, T. Scheuermann, and A. Lastra. Physically-based visual simulation on

graphics hardware. InProceedings of Graphics Hardware ’02, 2002.

[12] W. Heidrich and H.-P. Seidel. Realistic, hardware accelerated shading and lighting.ACM Trans.

Graph., pages 171–178, 1999.

[13] Simon L. Peyton Jones.The Implementation of Functional Programming Languages. Prentice

Hall, 1987.

[14] Jan Kautz and Hans-Peter Seidel. Towards interactive bump mapping with anisotropic shift-

variant BRDFs. InProceedings of the 2000 ACM/SIGGRAPH Graphics Hardware Workshop,

pages 51–58, 2000.

[15] Laurent Lefebvre, Andrew Gruber, and Stephen Morein. U.s. patent: Multi-thread graphic pro-

cessing system, 2005.

[16] W. Mark, S. Glanville, and K. Akeley. Cg: A system for programming graphics hardware in a

c-like language. InSiggraph 2003, Computer Graphics Proceedings. ACM Press/ ACM SIG-

GRAPH/ Addison Wesley Longman, 2003.

[17] M. MCCOOL, Z. QIN, and T. POPA. Shader metaprogramming.In Proceedings of the 2002

ACM/SIGGRAPH Graphics Hardware Workshop, pages 57–68, 2002.

[18] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan, and Kevin Moule. Shader algebra.

ACM Trans. Graph., 23(3):787–795, 2004.

[19] Lance A. Miller. Programming by non-programmers.International Journal of Man-Machine

Studies, 6(2):237–260, 1974.

64

[20] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive multi-pass pro-

grammable shading. In Kurt Akeley, editor,Siggraph 2000, Computer Graphics Proceedings,,

pages 425–432. ACM Press/ ACM SIGGRAPH/ Addison Wesley Longman, 2000.

[21] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov,and Pat Hanrahan. A real-time procedu-

ral shading system for programmable graphics hardware. InSiggraph 2001, Computer Graphics

Proceedings,. ACM Press/ ACM SIGGRAPH/ Addison Wesley Longman, 2001.

[22] Randi J. Rost.OpenGL(R) Shading Language. Addison Wesley Longman Publishing Co., Inc.,

Redwood City, CA, USA, 2004.

[23] W. Taha and T. Sheard. Multi-stage programming with explicit annotations. InPartial Evaluation

and Semantics-Based Program Manipulation, Amsterdam, The Netherlands, June 1997, pages

203–217. New York: ACM, 1997.

[24] D. A. Turner. Miranda: a non-strict functional language with polymorphic types. InProc. of a

conference on Functional programming languages and computer architecture, pages 1–16, New

York, NY, USA, 1985. Springer-Verlag New York, Inc.

[25] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. InConference Record of

the 16th Annual ACM Symposium on Principles of Programming Languages, pages 60–76. ACM,

January 1989.

[26] G. M. Weinberg.The psychology of computer programming. Van Nostrand Reinhold Co., New

York, NY, USA, 1988.

65

ACKNOWLEDGMENTS

I would like to take this moment to thank the people in my life that, without their friendship,

guidance, and support, this work would never have been completed. Dr. Dirk Reiners for giving me the

opportunity to work on such a great project and keeping me headed in the right direction; Dr. Adrian

Sannier for showing me that the success of a project depends on much more than the talent and effort

of the programmers, advice that will stick with me throughout my career; and Dr. Gary Leavens for

his advice, in the classroom and out, on how to be a better scientist, engineer, and person. I would also

like to thank, in no particular order:

• Andres Reinot, for letting me bounce ideas off of him throughout the research’s evolution.

• my girlfriend, Laura Manor, for supporting me in these stressful times and making me smile

when I needed it the most.

• my parents, Gregg and Sue Austin, and the rest of my family, who were always there for me,

even when school was the last thing that I wanted to deal with.

• Bryan and Jessica Walter, Jared Knutzon, and Jon Heseman, without whom, I would not have

even started graduate school.

• Michael Van Waardhuizen, Benjamin Garvey, and ChristopherTasler for being great friends

throughout college and after.

• all of my friends in the indie game development community, towhom I owe both my ability to

argue cogently and years of entertainment.

