
Chad Austin

GLScry: OpenGL Performance Analysis Toolkit Renaissance: Next Generation Shading Language for GPUs
Motivation
● GPU manufacturers are secretive about their specific performance characteristics.
● Existing OpenGL performance analysis tools are either specific to one subsystem or too old.
● We want one extensible framework that includes a variety of tests for features in modern GPUs

including vertex cache size, existence of hierarchical Z, and cost of switching shader state versus
textures.

● Automatic optimization of a scene graph based on the current display hardware.
● It should be possible to write and extend tests without having to recompile anything.

Dr. Dirk Reiners

Implementation
● Python test scripts set up geometry, render states and drive Boost.Python-exported C++

measurement code.
● The native measurement code runs some OpenGL commands in a loop for some amount of time and

returns a set of results (vertex rate, primitive rate, fill rate, batch rate).
● The script then graphs the results.

from glscry import *

geo = buildGeometry((GL_TRIANGLES, 1024),
 v=defineArray(Array_f, 2,
 [(5, 5), (5, 6), (6, 6)]),
 n=defineArray(Array_f, 3,
 [(1, 0, 0), (0, 1, 0), (0, 0, 1)]))

def dirLight(light):
 light.ambient = Vec4f(1, 1, 1, 1)
 light.diffuse = Vec4f(1, 1, 1, 1)
 light.specular = Vec4f(1, 1, 1, 1)
 light.position = Vec4f(0, 0, 1, 0)

def posLight(light):
 light.ambient = Vec4f(1, 1, 1, 1)
 light.diffuse = Vec4f(1, 1, 1, 1)
 light.specular = Vec4f(1, 1, 1, 1)
 light.position = Vec4f(1, 2, 3, 1)

def spotLight(light):
 light.ambient = Vec4f(1, 1, 1, 1)
 light.diffuse = Vec4f(1, 1, 1, 1)
 light.specular = Vec4f(1, 1, 1, 1)
 light.position = Vec4f(1, 2, 1, 1)
 #light.spotExponent ?
 light.spotCutoff = 45

def makeTest(buildLight, i):
 state = LightState()
 state.enableLighting = True
 for j in range(len(state.lights)):
 light = state.lights[j]
 light.enable = j < i
 buildLight(light)

 test = VertexArrayTest('%s lights' % i, geo)
 test.addStateSet(StateSet(state))
 return test

def run(shortname, testList, type):
 line = runTests(type, testList, 10)
 generateGraph('lights_' + shortname, line, 'VertexRate',
 xlabel='Number of Lights')
 return line

lights = range(len(LightState().lights) + 1)
lines = [
 run('dir', [makeTest(dirLight, i) for i in lights], 'Directional'),
 run('pos', [makeTest(posLight, i) for i in lights], 'Positional'),
 run('spot', [makeTest(spotLight, i) for i in lights], 'Spot')]
generateGraph("lights", lines, 'VertexRate', xlabel='Number of Lights')

Brief History of Real-Time Shading Languages

0th generation “languages”:
- Not a general-purpose language
- Use textures and special blending operations to implement some shading algorithms
Examples: special texture blend modes, register combiners

1st generation languages:
- Assembly language for register machine
- Native data type is floating point 4-vector
Examples: ARBvp, ARBfp, D3D low-level shading language

2nd generation languages:
- High-level, C-like
- Still not as expressive as we're used to on CPUs
- Often compiled into assembly language
Examples: HLSL, Cg, GLSL

Meta-programming languages:
- Use host language to express operations
- Operations on custom data types secretly compile into lower-level language
- Well-integrated facilities for passing data into shader
- Can use host language features, especially for specialization
- Require compilation in host compiler, cannot treat these shaders as assets
Examples: Sh, Vertigo

Motivation

When the limitations of the assembly languages became clear, the transition to a C-like language
was natural. Now we're hitting the limits of the C-like languages. Half-Life 2, for example
generates over a thousand shaders with a preprocess step that combines multiple independent effects.

Goals

● Introduce functional programming language concepts of higher-order functions, lambdas,
automatic type inference, and referential transparency.

● Allow staged computation: generate specialized (and efficient) shaders by specifying constant
values and allowing the shader to be partially evaluated in that context.

● Use human interaction design techniques to guide language specification, drawing influence from
Haskell and Python.

● Hide (or at least blur) the distinction between vertex and fragment processors.

